Deep neural networks (DNNs) have achieved tremendous success in a variety of applications across many disciplines. Yet, their superior performance comes with the expensive cost of requiring correctly annotated large-scale datasets. Moreover, due to DNNs’ rich capacity, errors in training labels can hamper performance. To combat this problem, mean absolute error (MAE) has recently been proposed as a noise-robust alternative to the commonly-used categorical cross entropy (CCE) loss. However, as we show in this paper, MAE can perform poorly with DNNs and challenging datasets. Here, we present a theoretically grounded set of noise-robust loss functions that can be seen as a generalization of MAE and CCE. Proposed loss functions can be readily applied with any existing DNN architecture and algorithm, while yielding good performance in a wide range of noisy label scenarios. We report results from experiments conducted with CIFAR-10, CIFAR-100 and FASHIONMNIST datasets and synthetically generated noisy labels.
more »
« less
Mitigating Memorization of Noisy Labels via Regularization between Representations
Designing robust loss functions is popular in learning with noisy labels while existing designs did not explicitly consider the overfitting property of deep neural networks (DNNs). As a result, applying these losses may still suffer from overfitting/memorizing noisy labels as training proceeds. In this paper, we first theoretically analyze the memorization effect and show that a lower-capacity model may perform better on noisy datasets. However, it is non-trivial to design a neural network with the best capacity given an arbitrary task. To circumvent this dilemma, instead of changing the model architecture, we decouple DNNs into an encoder followed by a linear classifier and propose to restrict the function space of a DNN by a representation regularizer. Particularly, we require the distance between two self-supervised features to be positively related to the distance between the corresponding two supervised model outputs. Our proposed framework is easily extendable and can incorporate many other robust loss functions to further improve performance. Extensive experiments and theoretical analyses support our claims. Code is available at https://github.com/UCSC-REAL/SelfSup_NoisyLabel.
more »
« less
- PAR ID:
- 10411740
- Date Published:
- Journal Name:
- International Conference on Learning Representations (ICLR)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Daumé III, Hal; Singh, Aarti (Ed.)Learning with noisy labels is a common challenge in supervised learning. Existing approaches often require practitioners to specify noise rates, i.e., a set of parameters controlling the severity of label noises in the problem, and the specifications are either assumed to be given or estimated using additional steps. In this work, we introduce a new family of loss functions that we name as peer loss functions, which enables learning from noisy labels and does not require a priori specification of the noise rates. Peer loss functions work within the standard empirical risk minimization (ERM) framework. We show that, under mild conditions, performing ERM with peer loss functions on the noisy data leads to the optimal or a near-optimal classifier as if performing ERM over the clean training data, which we do not have access to. We pair our results with an extensive set of experiments. Peer loss provides a way to simplify model development when facing potentially noisy training labels, and can be promoted as a robust candidate loss function in such situations.more » « less
-
Modern neural networks are typically trained in an over-parameterized regime where the parameters of the model far exceed the size of the training data. Due to over-parameterization these neural networks in principle have the capacity to (over)fit any set of labels including pure noise. Despite this high fitting capacity, somewhat paradoxically, neural network models trained via first-order methods continue to predict well on yet unseen test data. In this paper we take a step towards demystifying this phenomena. In particular we show that first order methods such as gradient descent are provably robust to noise/corruption on a constant fraction of the labels despite over-parametrization under a rich dataset model. In particular: i) First, we show that in the first few iterations where the updates are still in the vicinity of the initialization these algorithms only fit to the correct labels essentially ignoring the noisy labels. ii) Secondly, we prove that to start to overfit to the noisy labels these algorithms must stray rather far from from the initial model which can only occur after many more iterations. Together, these show that gradient descent with early stopping is provably robust to label noise and shed light on empirical robustness of deep networks as well as commonly adopted heuristics to prevent overfitting.more » « less
-
Benign overfitting is the phenomenon wherein none of the predictors in the hypothesis class can achieve perfect accuracy (i.e., non-realizable or noisy setting), but a model that interpolates the training data still achieves good generalization. A series of recent works aim to understand this phenomenon for regression and classification tasks using linear predictors as well as two-layer neural networks. In this paper, we study such a benign overfitting phenomenon in an adversarial setting. We show that under a distributional assumption, interpolating neural networks found using adversarial training generalize well despite inferencetime attacks. Specifically, we provide convergence and generalization guarantees for adversarial training of two-layer networks (with smooth as well as non-smooth activation functions) showing that under moderate ℓ2 norm perturbation budget, the trained model has near-zero robust training loss and near-optimal robust generalization error. We support our theoretical findings with an empirical study on synthetic and real-world data.more » « less
-
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resources, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.more » « less
An official website of the United States government

