skip to main content


Title: Mitigating Memorization of Noisy Labels via Regularization between Representations
Designing robust loss functions is popular in learning with noisy labels while existing designs did not explicitly consider the overfitting property of deep neural networks (DNNs). As a result, applying these losses may still suffer from overfitting/memorizing noisy labels as training proceeds. In this paper, we first theoretically analyze the memorization effect and show that a lower-capacity model may perform better on noisy datasets. However, it is non-trivial to design a neural network with the best capacity given an arbitrary task. To circumvent this dilemma, instead of changing the model architecture, we decouple DNNs into an encoder followed by a linear classifier and propose to restrict the function space of a DNN by a representation regularizer. Particularly, we require the distance between two self-supervised features to be positively related to the distance between the corresponding two supervised model outputs. Our proposed framework is easily extendable and can incorporate many other robust loss functions to further improve performance. Extensive experiments and theoretical analyses support our claims. Code is available at https://github.com/UCSC-REAL/SelfSup_NoisyLabel.  more » « less
Award ID(s):
2143895 2007951
NSF-PAR ID:
10411740
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations (ICLR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) have achieved tremendous success in a variety of applications across many disciplines. Yet, their superior performance comes with the expensive cost of requiring correctly annotated large-scale datasets. Moreover, due to DNNs’ rich capacity, errors in training labels can hamper performance. To combat this problem, mean absolute error (MAE) has recently been proposed as a noise-robust alternative to the commonly-used categorical cross entropy (CCE) loss. However, as we show in this paper, MAE can perform poorly with DNNs and challenging datasets. Here, we present a theoretically grounded set of noise-robust loss functions that can be seen as a generalization of MAE and CCE. Proposed loss functions can be readily applied with any existing DNN architecture and algorithm, while yielding good performance in a wide range of noisy label scenarios. We report results from experiments conducted with CIFAR-10, CIFAR-100 and FASHIONMNIST datasets and synthetically generated noisy labels. 
    more » « less
  2. Modern neural networks are typically trained in an over-parameterized regime where the parameters of the model far exceed the size of the training data. Due to over-parameterization these neural networks in principle have the capacity to (over)fit any set of labels including pure noise. Despite this high fitting capacity, somewhat paradoxically, neural network models trained via first-order methods continue to predict well on yet unseen test data. In this paper we take a step towards demystifying this phenomena. In particular we show that first order methods such as gradient descent are provably robust to noise/corruption on a constant fraction of the labels despite over-parametrization under a rich dataset model. In particular: i) First, we show that in the first few iterations where the updates are still in the vicinity of the initialization these algorithms only fit to the correct labels essentially ignoring the noisy labels. ii) Secondly, we prove that to start to overfit to the noisy labels these algorithms must stray rather far from from the initial model which can only occur after many more iterations. Together, these show that gradient descent with early stopping is provably robust to label noise and shed light on empirical robustness of deep networks as well as commonly adopted heuristics to prevent overfitting. 
    more » « less
  3. Daumé III, Hal ; Singh, Aarti (Ed.)
    Learning with noisy labels is a common challenge in supervised learning. Existing approaches often require practitioners to specify noise rates, i.e., a set of parameters controlling the severity of label noises in the problem, and the specifications are either assumed to be given or estimated using additional steps. In this work, we introduce a new family of loss functions that we name as peer loss functions, which enables learning from noisy labels and does not require a priori specification of the noise rates. Peer loss functions work within the standard empirical risk minimization (ERM) framework. We show that, under mild conditions, performing ERM with peer loss functions on the noisy data leads to the optimal or a near-optimal classifier as if performing ERM over the clean training data, which we do not have access to. We pair our results with an extensive set of experiments. Peer loss provides a way to simplify model development when facing potentially noisy training labels, and can be promoted as a robust candidate loss function in such situations. 
    more » « less
  4. Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of squared Euclidean distances that may not perform optimally on noisy data sets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared l2-norm distance to center the data, which is not valid when the objective does not use the Euclidean distance. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The experimental results demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods. 
    more » « less
  5. Human context recognition (HCR) using sensor data is a crucial task in Context-Aware (CA) applications in domains such as healthcare and security. Supervised machine learning HCR models are trained using smartphone HCR datasets that are scripted or gathered in-the-wild. Scripted datasets are most accurate because of their consistent visit patterns. Supervised machine learning HCR models perform well on scripted datasets but poorly on realistic data. In-the-wild datasets are more realistic, but cause HCR models to perform worse due to data imbalance, missing or incorrect labels, and a wide variety of phone placements and device types. Lab-to-field approaches learn a robust data representation from a scripted, high-fidelity dataset, which is then used for enhancing performance on a noisy, in-the-wild dataset with similar labels. This research introduces Triplet-based Domain Adaptation for Context REcognition (Triple-DARE), a lab-to-field neural network method that combines three unique loss functions to enhance intra-class compactness and inter-class separation within the embedding space of multi-labeled datasets: (1) domain alignment loss in order to learn domain-invariant embeddings; (2) classification loss to preserve task-discriminative features; and (3) joint fusion triplet loss. Rigorous evaluations showed that Triple-DARE achieved 6.3% and 4.5% higher F1-score and classification, respectively, than state-of-the-art HCR baselines and outperformed non-adaptive HCR models by 44.6% and 10.7%, respectively. 
    more » « less