Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We can handle millions of filtering rules without noticeable operational overhead.
more »
« less
Timing is Almost Everything: Realistic Evaluation of the Very Short Intermittent DDoS Attacks
Distributed Denial-of-Service (DDoS) is a big threat to the security and stability of Internet-based services today. Among the recent advanced application-layer DDoS attacks, the Very Short Intermittent DDoS (VSI-DDoS) is the attack, which can bypass existing detection systems and significantly degrade the QoS experienced by users of web services. However, in order for the VSI-DDoS attack to work effectively, bots participating in the attack should be tightly synchronized, an assumption that is difficult to be met in reality. In this paper, we conducted a quantitative analysis to understand how a minimal deviation from perfect synchronization in botnets affects the performance and effectiveness of the VSI-DDoS attack. We found that VSI-DDoS became substantially less effective. That is, it lost 85.7% in terms of effectiveness under about 90ms synchronization inaccuracy, which is a very small inaccuracy under normal network conditions.
more »
« less
- Award ID(s):
- 1809000
- PAR ID:
- 10084230
- Date Published:
- Journal Name:
- 16th Annual Conference on Privacy, Security and Trust, PST 2018
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We show our system can successfully mitigate resource exhaustion using replay of a real-world attack. We can handle millions of filtering rules without noticeable operational overhead.more » « less
-
IP anycast is used for services such as DNS and Content Delivery Networks (CDN) to provide the capacity to handle Distributed Denial-of-Service (DDoS) attacks. During a DDoS attack service operators redistribute traffic between anycast sites to take advantage of sites with unused or greater capacity. Depending on site traffic and attack size, operators may instead concentrate attackers in a few sites to preserve operation in others. Operators use these actions during attacks, but how to do so has not been described systematically or publicly. This paper describes several methods to use BGP to shift traffic when under DDoS, and shows that a \emph{response playbook} can provide a menu of responses that are options during an attack. To choose an appropriate response from this playbook, we also describe a new method to estimate true attack size, even though the operator's view during the attack is incomplete. Finally, operator choices are constrained by distributed routing policies, and not all are helpful. We explore how specific anycast deployment can constrain options in this playbook, and are the first to measure how generally applicable they are across multiple anycast networks.more » « less
-
null (Ed.)With the proliferation of smart and connected mobile, wireless devices at the edge, Distributed Denial of Service (DDoS) attacks are increasing. Weak security, improper commissioning, and the fast, non-standardized growth of the IoT industry are the major contributors to the recent DDoS attacks, e.g., Mirai Botnet attack on Dyn and Memcached attack on GitHub. Similar to UDP/TCP flooding (common DDoS attack vector), request flooding attack is the primary DDoS vulnerability in the Named-Data Networking (NDN) architecture.In this paper, we propose PERSIA, a distributed request flooding prevention and mitigation framework for NDN-enabled ISPs, to ward-off attacks at the edge. PERSIA's edge-centric attack prevention mechanism eliminates the possibility of successful attacks from malicious end hosts. In the presence of compromised infrastructure (routers), PERSIA dynamically deploys an in-network mitigation strategy to minimize the attack's magnitude. Our experimentation demonstrates PERSIA's resiliency and effectiveness in preventing and mitigating DDoS attacks while maintaining legitimate users' quality of experience (> 99.92% successful packet delivery rate).more » « less
-
DDoS attacks are an immense threat to online services, and numerous studies have been done to detect and defend against them. DDoS attacks, however, are becoming more sophisticated and launched with different purposes, making the detection and instant defense as important as analyzing the behavior of the attack during and after it takes place. Studying and modeling the Spatio-temporal evolvement of DDoS attacks is essential to predict, assess, and combat the problem, since recent studies have shown the emergence of wider and more powerful adversaries. This work aims to model seven Spatio-temporal behavioral characteristics of DDoS attacks, including the attack magnitude, the adversaries’ botnet information, and the attack’s source locality down to the organization. We leverage four state-of-the-art deep learning methods to construct an ensemble of models to capture and predict behavioral patterns of the attack. The proposed ensemble operates in two frequencies, hourly and daily, to actively model and predict the attack behavior and evolvement, and oversee the effect of implementing a defense mechanism.more » « less
An official website of the United States government

