skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum eigenstates from classical Gibbs distributions
We discuss how the language of wave functions (state vectors) andassociated non-commuting Hermitian operators naturally emerges fromclassical mechanics by applying the inverse Wigner-Weyl transform to thephase space probability distribution and observables. In this language,the Schr"odinger equation follows from the Liouville equation, with \hbar ℏ now a free parameter. Classical stationary distributions can berepresented as sums over stationary states with discrete (quantized)energies, where these states directly correspond to quantum eigenstates.Interestingly, it is now classical mechanics which allows for apparentnegative probabilities to occupy eigenstates, dual to the negativeprobabilities in Wigner’s quasiprobability distribution. These negativeprobabilities are shown to disappear when allowing sufficientuncertainty in the classical distributions. We show that thiscorrespondence is particularly pronounced for canonical Gibbs ensembles,where classical eigenstates satisfy an integral eigenvalue equation thatreduces to the Schr"odinger equation in a saddle-pointapproximation controlled by the inverse temperature. We illustrate thiscorrespondence by showing that some paradigmatic examples such astunneling, band structures, Berry phases, Landau levels, levelstatistics and quantum eigenstates in chaotic potentials can bereproduced to a surprising precision from a classical Gibbs ensemble,without any reference to quantum mechanics and with all parameters(including \hbar ℏ )on the order of unity.  more » « less
Award ID(s):
1813499
PAR ID:
10293278
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SciPost Physics
Volume:
10
Issue:
1
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a method for generating squeezed Schr¨odinger cat states and cubic phase states via quantum nondemolition measurement of the squared-quadrature operator, offering a realistic route to fault-tolerant universal continuous-variable quantum computation. 
    more » « less
  2. Markov chain Monte Carlo algorithms have important applications in counting problems and in machine learning problems, settings that involve estimating quantities that are difficult to compute exactly. How much can quantum computers speed up classical Markov chain algorithms? In this work we consider the problem of speeding up simulated annealing algorithms, where the stationary distributions of the Markov chains are Gibbs distributions at temperatures specified according to an annealing schedule. We construct a quantum algorithm that both adaptively constructs an annealing schedule and quantum samples at each temperature. Our adaptive annealing schedule roughly matches the length of the best classical adaptive annealing schedules and improves on nonadaptive temperature schedules by roughly a quadratic factor. Our dependence on the Markov chain gap matches other quantum algorithms and is quadratically better than what classical Markov chains achieve. Our algorithm is the first to combine both of these quadratic improvements. Like other quantum walk algorithms, it also improves on classical algorithms by producing “qsamples” instead of classical samples. This means preparing quantum states whose amplitudes are the square roots of the target probability distribution. In constructing the annealing schedule we make use of amplitude estimation, and we introduce a method for making amplitude estimation nondestructive at almost no additional cost, a result that may have independent interest. Finally we demonstrate how this quantum simulated annealing algorithm can be applied to the problems of estimating partition functions and Bayesian inference. 
    more » « less
  3. We consider a toy model for emergence of chaos in a quantum many-body short-range-interacting system: two one-dimensional hard-core particles in a box, with a small mass defect as a perturbation over an integrable system, the latter represented by two equal mass particles.To that system, we apply a quantum generalization of Chirikov's criterion for the onset of chaos, i.e. the criterion of overlapping resonances.There, classical nonlinear resonances translate almost automatically to the quantum language. Quantum mechanics intervenes at a later stage: the resonances occupying less than one Hamiltonian eigenstate are excluded from the chaos criterion. Resonances appear as contiguous patches of low purity unperturbed eigenstates, separated by the groups of undestroyed states-the quantum analogues of the classical KAM tori. 
    more » « less
  4. abstract: The finite-rank Lieb-Thirring inequality provides an estimate on a Riesz sum of the $$N$$ lowest eigenvalues of a Schr\odinger operator $$-\Delta-V(x)$ in terms of an $$L^p(\mathbb{R}^d)$$ norm of the potential $$V$$. We prove here the existence of an optimizing potential for each $$N$$, discuss its qualitative properties and the Euler--Lagrange equation (which is a system of coupled nonlinear Schr\odinger equations) and study in detail the behavior of optimizing sequences. In particular, under the condition $$\gamma>\max\{0,2-d/2\}$ on the Riesz exponent in the inequality, we prove the compactness of all the optimizing sequences up to translations. We also show that the optimal Lieb-Thirring constant cannot be stationary in $$N$$, which sheds a new light on a conjecture of Lieb-Thirring. In dimension $d=1$ at $$\gamma=3/2$$, we show that the optimizers with $$N$$ negative eigenvalues are exactly the Korteweg-de Vries $$N$$-solitons and that optimizing sequences must approach the corresponding manifold. Our work also covers the critical case $$\gamma=0$$ in dimension $$d\geq3$$ (Cwikel-Lieb-Rozenblum inequality) for which we exhibit and use a link with invariants of the Yamabe problem. 
    more » « less
  5. null (Ed.)
    Path integral quantum Monte Carlo (PIMC) is a method for estimating thermal equilibrium properties of stoquastic quantum spin systems by sampling from a classical Gibbs distribution using Markov chain Monte Carlo. The PIMC method has been widely used to study the physics of materials and for simulated quantum annealing, but these successful applications are rarely accompanied by formal proofs that the Markov chains underlying PIMC rapidly converge to the desired equilibrium distribution.In this work we analyze the mixing time of PIMC for 1D stoquastic Hamiltonians, including disordered transverse Ising models (TIM) with long-range algebraically decaying interactions as well as disordered XY spin chains with nearest-neighbor interactions. By bounding the convergence time to the equilibrium distribution we rigorously justify the use of PIMC to approximate partition functions and expectations of observables for these models at inverse temperatures that scale at most logarithmically with the number of qubits.The mixing time analysis is based on the canonical paths method applied to the single-site Metropolis Markov chain for the Gibbs distribution of 2D classical spin models with couplings related to the interactions in the quantum Hamiltonian. Since the system has strongly nonisotropic couplings that grow with system size, it does not fall into the known cases where 2D classical spin models are known to mix rapidly. 
    more » « less