skip to main content


Title: Quantum eigenstates from classical Gibbs distributions
We discuss how the language of wave functions (state vectors) andassociated non-commuting Hermitian operators naturally emerges fromclassical mechanics by applying the inverse Wigner-Weyl transform to thephase space probability distribution and observables. In this language,the Schr"odinger equation follows from the Liouville equation, with \hbar ℏ now a free parameter. Classical stationary distributions can berepresented as sums over stationary states with discrete (quantized)energies, where these states directly correspond to quantum eigenstates.Interestingly, it is now classical mechanics which allows for apparentnegative probabilities to occupy eigenstates, dual to the negativeprobabilities in Wigner’s quasiprobability distribution. These negativeprobabilities are shown to disappear when allowing sufficientuncertainty in the classical distributions. We show that thiscorrespondence is particularly pronounced for canonical Gibbs ensembles,where classical eigenstates satisfy an integral eigenvalue equation thatreduces to the Schr"odinger equation in a saddle-pointapproximation controlled by the inverse temperature. We illustrate thiscorrespondence by showing that some paradigmatic examples such astunneling, band structures, Berry phases, Landau levels, levelstatistics and quantum eigenstates in chaotic potentials can bereproduced to a surprising precision from a classical Gibbs ensemble,without any reference to quantum mechanics and with all parameters(including \hbar ℏ )on the order of unity.  more » « less
Award ID(s):
1813499
NSF-PAR ID:
10293278
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SciPost Physics
Volume:
10
Issue:
1
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Markov chain Monte Carlo algorithms have important applications in counting problems and in machine learning problems, settings that involve estimating quantities that are difficult to compute exactly. How much can quantum computers speed up classical Markov chain algorithms? In this work we consider the problem of speeding up simulated annealing algorithms, where the stationary distributions of the Markov chains are Gibbs distributions at temperatures specified according to an annealing schedule. We construct a quantum algorithm that both adaptively constructs an annealing schedule and quantum samples at each temperature. Our adaptive annealing schedule roughly matches the length of the best classical adaptive annealing schedules and improves on nonadaptive temperature schedules by roughly a quadratic factor. Our dependence on the Markov chain gap matches other quantum algorithms and is quadratically better than what classical Markov chains achieve. Our algorithm is the first to combine both of these quadratic improvements. Like other quantum walk algorithms, it also improves on classical algorithms by producing “qsamples” instead of classical samples. This means preparing quantum states whose amplitudes are the square roots of the target probability distribution. In constructing the annealing schedule we make use of amplitude estimation, and we introduce a method for making amplitude estimation nondestructive at almost no additional cost, a result that may have independent interest. Finally we demonstrate how this quantum simulated annealing algorithm can be applied to the problems of estimating partition functions and Bayesian inference. 
    more » « less
  2. We study the paraxial wave equation with a randomly perturbed index of refraction, which can model the propagation of a wave beam in a turbulent medium. The random perturbation is a stationary and isotropic process with a general form of the covariance that may or may not be integrable. We focus attention mostly on the nonintegrable case, which corresponds to a random perturbation with long-range correlations, that is, relevant for propagation through a cloudy turbulent atmosphere. The analysis is carried out in a high-frequency regime where the forward scattering approximation holds. It reveals that the randomization of the wave field is multiscale: The travel time of the wave front is randomized at short distances of propagation, and it can be described by a fractional Brownian motion. The wave field observed in the random travel time frame is affected by the random perturbations at long distances, and it is described by a Schr\"odinger-type equation driven by a standard Brownian field. We use these results to quantify how scattering leads to decorrelation of the spatial and spectral components of the wave field and to a deformation of the pulse emitted by the source. These are important questions for applications, such as imaging and free space communications with pulsed laser beams through a turbulent atmosphere. We also compare the results with those used in the optics literature, which are based on the Kolmogorov model of turbulence. We show explicitly that the commonly used approximations for the decorrelation of spatial and spectral components are appropriate for the Kolmogorov model but fail for models with long-range correlations. 
    more » « less
  3. We consider a toy model for emergence of chaos in a quantum many-body short-range-interacting system: two one-dimensional hard-core particles in a box, with a small mass defect as a perturbation over an integrable system, the latter represented by two equal mass particles.To that system, we apply a quantum generalization of Chirikov's criterion for the onset of chaos, i.e. the criterion of overlapping resonances.There, classical nonlinear resonances translate almost automatically to the quantum language. Quantum mechanics intervenes at a later stage: the resonances occupying less than one Hamiltonian eigenstate are excluded from the chaos criterion. Resonances appear as contiguous patches of low purity unperturbed eigenstates, separated by the groups of undestroyed states-the quantum analogues of the classical KAM tori. 
    more » « less
  4. Andrews, David L. ; Galvez, Enrique J. ; Rubinsztein-Dunlop, Halina (Ed.)
    The similarity between the 2D Helmholtz equation in elliptical coordinates and the Schr¨odinger equation for the simple mechanical pendulum inspires us to use light to mimic this quantum system. When optical beams are prepared in Mathieu modes, their intensity in the Fourier plane is proportional to the quantum mechanical probability for the pendulum. Previous works have produced a two-dimensional pendulum beam that oscillates as a function of time through the superpositions of Mathieu modes with phases proportional to pendulum energies. Here we create a three-dimensional pendulum wavepacket made of a superposition of Helical Mathieu-Gaussian modes, prepared in such a way that the components of the wave-vectors along the propagation direction are proportional to the pendulum energies. The resulting pattern oscillates or rotates as it propagates, in 3D, with the propagation coordinate playing the role of time. We obtained several different propagating beam patterns for the unbound-rotor and the bound-swinging pendulum cases. We measured the beam intensity as a function of the propagation distance. The integrated beam intensity along elliptical angles plays the role of quantum pendulum probabilities. Our measurements are in excellent agreement with numerical simulations. 
    more » « less
  5. We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest. 
    more » « less