We propose and investigate an additive regression model for symmetric positive-definite matrix-valued responses and multiple scalar predictors. The model exploits the Abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general Abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions, but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established, and numerical studies show that the proposed model enjoys good numerical performance, and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.
more » « less- Award ID(s):
- 2014626
- PAR ID:
- 10413350
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrika
- Volume:
- 110
- Issue:
- 2
- ISSN:
- 0006-3444
- Page Range / eLocation ID:
- p. 361-379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Interface problems have wide applications in modern scientific research. Obtaining accurate numerical solutions of multi-domain problems involving triple junction conditions remains a significant challenge. In this paper, we develop an efficient finite element method based on non-body-fitting meshes for solving multi-domain elliptic interface problems. We follow the idea of immersed finite element by modifying local basis functions to accommodate interface conditions. We enrich the local finite element space by adding new basis functions for handling non-homogeneous flux jump. The numerical scheme is symmetric and positive definite. Numerical experiments are provided to demonstrate the features of our method.more » « less
-
In canonical gravity, general covariance is implemented by hypersurface-deformation symmetries on thephase space. The different versions of hypersurface deformations required for full covariance have complicated interplays with one another, governed by non-Abelian brackets with structure functions. For spherically symmetric space-times, it is possible to identify a certain Abelian substructure within general hypersurface deformations, which suggests a simplified realization as a Lie algebra. The generators of this substructure can be quantized more easily than full hypersurface deformations, but the symmetries they generate do not directly correspond to hypersurface deformations. The availability of consistent quantizations therefore does not guarantee general covariance or a meaningful quantum notion thereof. In addition to placing the Abelian substructure within the full context of spherically symmetric hypersurface deformation, this paper points out several subtleties relevant for attempted applications in quantized space-time structures. In particular, it follows that recent constructions by Gambini, Olmedo, and Pullin in an Abelianized setting fail to address the covariance crisis of loop quantum gravity.more » « less
-
Abstract Given
n disjoint intervals on together withn functions , , and an matrix , the problem is to find anL 2solution , , to the linear system , where , is a matrix of finite Hilbert transforms with defined on , and is a matrix of the corresponding characteristic functions on . Since we can interpret , as a generalized multi‐interval finite Hilbert transform, we call the formula for the solution as “the inversion formula” and the necessary and sufficient conditions for the existence of a solution as the “range conditions”. In this paper we derive the explicit inversion formula and the range conditions in two specific cases: a) the matrix Θ is symmetric and positive definite, and; b) all the entries of Θ are equal to one. We also prove the uniqueness of solution, that is, that our transform is injective. In the case a), that is, when the matrix Θ is positive definite, the inversion formula is given in terms of the solution of the associated matrix Riemann–Hilbert Problem. In the case b) we reduce the multi interval problem to a problem onn copies of and then express our answers in terms of the Fourier transform. We also discuss other cases of the matrix Θ. -
We demonstrate that with an optimally tuned scheduling function, adiabatic quantum computing (AQC) can readily solve a quantum linear system problem (QLSP) with O (κ poly(log (κ ε))) runtime, where κ is the condition number, and ε is the target accuracy. This is near optimal with respect to both κ and ε, and is achieved without relying on complicated amplitude amplification procedures that are difficult to implement. Our method is applicable to general non-Hermitian matrices, and the cost as well as the number of qubits can be reduced when restricted to Hermitian matrices, and further to Hermitian positive definite matrices. The success of the time-optimal AQC implies that the quantum approximate optimization algorithm (QAOA) with an optimal control protocol can also achieve the same complexity in terms of the runtime. Numerical results indicate that QAOA can yield the lowest runtime compared to the time-optimal AQC, vanilla AQC, and the recently proposed randomization method.more » « less
-
Abstract Modern data collection often entails longitudinal repeated measurements that assume values on a Riemannian manifold. Analyzing such longitudinal Riemannian data is challenging, because of both the sparsity of the observations and the nonlinear manifold constraint. Addressing this challenge, we propose an intrinsic functional principal component analysis for longitudinal Riemannian data. Information is pooled across subjects by estimating the mean curve with local Fréchet regression and smoothing the covariance structure of the linearized data on tangent spaces around the mean. Dimension reduction and imputation of the manifold‐valued trajectories are achieved by utilizing the leading principal components and applying best linear unbiased prediction. We show that the proposed mean and covariance function estimates achieve state‐of‐the‐art convergence rates. For illustration, we study the development of brain connectivity in a longitudinal cohort of Alzheimer's disease and normal participants by modeling the connectivity on the manifold of symmetric positive definite matrices with the affine‐invariant metric. In a second illustration for irregularly recorded longitudinal emotion compositional data for unemployed workers, we show that the proposed method leads to nicely interpretable eigenfunctions and principal component scores. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative database.