skip to main content

Title: Search and Rescue Operations with Mesh Networked Robots
Efficient path planning and communication of multi-robot systems in the case of a search and rescue operation is a critical issue facing robotics disaster relief efforts. Ensuring all the nodes of a specialized robotic search team are within range, while also covering as much area as possible to guarantee efficient response time, is the goal of this paper. We propose a specialized search-and-rescue model based on a mesh network topology of aerial and ground robots. The proposed model is based on several methods. First, each robot determines its position relative to other robots within the system, using RSSI. Packets are then communicated to other robots in the system detailing important information regarding robot system status, status of the mission, and identification number. The results demonstrate the ability to determine multi-robot navigation with RSSI, allowing low computation costs and increased search-and-rescue time efficiency.
Authors:
; ; ;
Award ID(s):
1757929
Publication Date:
NSF-PAR ID:
10084781
Journal Name:
Proceedings - International Conference on Computer Communications and Networks
ISSN:
1095-2055
Sponsoring Org:
National Science Foundation
More Like this
  1. Intelligent robot swarms are increasingly being explored as tools for search and rescue missions. Efficient path planning and robust communication networks are critical elements of completing missions. The focus of this research is to give unmanned aerial vehicles (UAVs) the ability to self-organize a mesh network that is optimized for area coverage. The UAVs will be able to read the communication strength between themselves and all the UAVs it is connected to using RSSI. The UAVs should be able to adjust their positioning closer to other UAVs if RSSI is below a threshold, and they should also maintain communication asmore »a group if they move together along a search path. Our approach was to use Genetic Algorithms in a simulated environment to achieve multi-node exploration with emphasis on connectivity and swarm spread.« less
  2. Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions aremore »needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures.« less
  3. Abstract Swarm robotic search aims at searching targets using a large number of collaborating simple mobile robots, with applications to search and rescue and hazard localization. In this regard, decentralized swarm systems are touted for their coverage scalability, time efficiency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes of approaches are available, namely, nature-inspired swarm heuristics and multi-robotic search methods. However, the ability to simultaneously achieve efficient scalability and provide fundamental insights into the exhibited behavior (as opposed to exhibiting a black-box behavior) remains an open problem. To address this problem, this paper extendsmore »the underlying search approach in batch-Bayesian optimization to perform search with embodied swarm agents operating in a (simulated) physical 2D arena. Key contributions lie in (1) designing an acquisition function that not only balances exploration and exploitation across the swarm but also allows modeling knowledge extraction over trajectories and (2) developing its distributed implementation to allow asynchronous task inference and path planning by the swarm robots. The resulting collective informative path planning approach is tested on target-search case studies of varying complexity, where the target produces a spatially varying (measurable) signal. Notably, superior performance, in terms of mission completion efficiency, is observed compared to exhaustive search and random walk baselines as well as a swarm optimization-based state-of-the-art method. Favorable scalability characteristics are also demonstrated.« less
  4. Unmanned aerial vehicles (UAVs), equipped with a variety of sensors, are being used to provide actionable information to augment first responders’ situational awareness in disaster areas for urban search and rescue (SaR) operations. However, existing aerial robots are unable to sense the occluded spaces in collapsed structures, and voids buried in disaster rubble that may contain victims. In this study, we developed a framework, AiRobSim, to simulate an aerial robot to acquire both aboveground and underground information for post-disaster SaR. The integration of UAV, ground-penetrating radar (GPR), and other sensors, such as global navigation satellite system (GNSS), inertial measurement unitmore »(IMU), and cameras, enables the aerial robot to provide a holistic view of the complex urban disaster areas. The robot-collected data can help locate critical spaces under the rubble to save trapped victims. The simulation framework can serve as a virtual training platform for novice users to control and operate the robot before actual deployment. Data streams provided by the platform, which include maneuver commands, robot states and environmental information, have potential to facilitate the understanding of the decision-making process in urban SaR and the training of future intelligent SaR robots.« less
  5. Physical sampling of water for off-site analysis is necessary for many applications like monitoring the quality of drinking water in reservoirs, understanding marine ecosystems, and measuring contamination levels in fresh-water systems. In this paper, the focus is on algorithms for efficient measurement and sampling using a multi-robot, data-driven, water-sampling behavior, where autonomous surface vehicles plan and execute water sampling using the chlorophyll density as a cue for plankton-rich water samples. We use two Autonomous Surface Vehicles (ASVs), one equipped with a water quality sensor and the other equipped with a water-sampling apparatus. The ASV with the sensor acts as anmore »explorer, measuring and building a spatial map of chlorophyll density in the given region of interest. The ASV equipped with the water sampling apparatus makes decisions in real time on where to sample the water based on the suggestions made by the explorer robot. We evaluate the system in the context of measuring chlorophyll distributions. We do this both in simulation based on real geophysical data from MODIS measurements, and on real robots in a water reservoir. We demonstrate the effectiveness of the proposed approach in several ways including in terms of mean error in the interpolated data as a function of distance traveled.« less