skip to main content


Title: Full State Quantum Circuit Simulation by Using Lossy Data Compression
In order to evaluate, validate, and refine the design of a new quantum algorithm or a quantum computer, researchers and developers need methods to assess their correctness and fidelity. This requires the capabilities of simulation for full quantum state amplitudes. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement. In this work, we present our technique to simulate more qubits than previously reported by using lossy data compression. Our empirical data suggests that we can simulate full state quantum circuits up to 63 qubits with 0.8 petabytes memory.  more » « less
Award ID(s):
1730449
NSF-PAR ID:
10084837
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE/ACM 29th The International Conference for High Performance computing, Networking, Storage and Analysis (SC2018)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Classical simulation of quantum circuits is crucial for evaluating and validating the design of new quantum algorithms. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement for the simulations. In this paper, we present a new data reduction technique to reduce the memory requirement of quantum circuit simulations. We apply our amplitude-aware lossy compression technique to the quantum state amplitude vector to trade the computation time and fidelity for memory space. The experimental results show that our simulator only needs 1/16 of the original memory requirement to simulate Quantum Fourier Transform circuits with 99.95% fidelity. The reduction amount of memory requirement suggests that we could increase 4 qubits in the quantum circuit simulation comparing to the simulation without our technique. Additionally, for some specific circuits, like Grover’s search, we could increase the simulation size by 18 qubits. 
    more » « less
  2. In order to evaluate, validate, and refine the design of new quantum algorithms or quantum computers, researchers and developers need methods to assess their correctness and fidelity. This requires the capabilities of quantum circuit simulations. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement for the simulations. In this work, we present our memory-efficient quantum circuit simulation by using lossy data compression. Our empirical data shows that we reduce the memory requirement to 16.5% and 2.24E-06 of the original requirement for QFT and Grover’s search, respectively. This finding further suggests that we can simulate deep quantum circuits up to 63 qubits with 0.8 petabytes memory. 
    more » « less
  3. Quantum circuit simulations are critical for evaluating quantum algorithms and machines. However, the number of state amplitudes required for full simulation increases exponentially with the number of qubits. In this study, we leverage data compression to reduce memory requirements, trading computation time and fidelity for memory space. Specifically, we develop a hybrid solution by combining the lossless compression and our tailored lossy compression method with adaptive error bounds at each timestep of the simulation. Our approach optimizes for compression speed and makes sure that errors due to lossy compression are uncorrelated, an important property for comparing simulation output with physical machines. Experiments show that our approach reduces the memory requirement of simulating the 61-qubit Grover's search algorithm from 32 exabytes to 768 terabytes of memory on Argonne's Theta supercomputer using 4,096 nodes. The results suggest that our techniques can increase the simulation size by 2~16 qubits for general quantum circuits. 
    more » « less
  4. It has been recently shown that a state generated by a one-dimensional noisy quantum computer is well approximated by a matrix product operator with a finite bond dimension independent of the number of qubits. We show that full quantum state tomography can be performed for such a state with a minimal number of measurement settings using a method known as tensor train cross approximation. The method works for reconstructing full rank density matrices and only requires measuring local operators, which are routinely performed in state-of-art experimental quantum platforms. Our method requires exponentially fewer state copies than the best known tomography method for unstructured states and local measurements. The fidelity of our reconstructed state can be further improved via supervised machine learning, without demanding more experimental data. Scalable tomography is achieved if the full state can be reconstructed from local reductions. 
    more » « less
  5. null (Ed.)
    We describe the contextual subspace variational quantum eigensolver (CS-VQE), a hybrid quantum-classical algorithm for approximating the ground state energy of a Hamiltonian. The approximation to the ground state energy is obtained as the sum of two contributions. The first contribution comes from a noncontextual approximation to the Hamiltonian, and is computed classically. The second contribution is obtained by using the variational quantum eigensolver (VQE) technique to compute a contextual correction on a quantum processor. In general the VQE computation of the contextual correction uses fewer qubits and measurements than the VQE computation of the original problem. Varying the number of qubits used for the contextual correction adjusts the quality of the approximation. We simulate CS-VQE on tapered Hamiltonians for small molecules, and find that the number of qubits required to reach chemical accuracy can be reduced by more than a factor of two. The number of terms required to compute the contextual correction can be reduced by more than a factor of ten, without the use of other measurement reduction schemes. This indicates that CS-VQE is a promising approach for eigenvalue computations on noisy intermediate-scale quantum devices. 
    more » « less