skip to main content

Title: Quantitative Methods to Investigate the 4D Dynamics of Heterochromatic Repair Sites in Drosophila Cells
Heterochromatin is mostly composed of long stretches of repeated DNA sequences prone to ectopic recombination during double-strand break (DSB) repair. In Drosophila, “safe” homologous recombination (HR) repair of heterochromatic DSBs relies on a striking relocalization of repair sites to the nuclear periphery. Central to understanding heterochromatin repair is the ability to investigate the 4D dynamics (movement in space and time) of repair sites. A specific challenge of these studies is preventing phototoxicity and photobleaching effects while imaging the sample over long periods of time, and with sufficient time points and Z-stacks to track repair foci over time. Here we describe an optimized approach for high-resolution live imaging of heterochromatic DSBs in Drosophila cells, with a specific emphasis on the fluorescent markers and imaging setup used to capture the motion of repair foci over long-time periods. We detail approaches that minimize photobleaching and phototoxicity with a DeltaVision widefield deconvolution microscope, and image processing techniques for signal recovery postimaging using SoftWorX and Imaris software. We present a method to derive mean square displacement curves revealing some of the biophysical properties of the motion. Finally, we describe a method in R to identify tracts of directed motions (DMs) in mixed trajectories. These approaches more » enable a deeper understanding of the mechanisms of heterochromatin dynamics and genome stability in the three-dimensional context of the nucleus and have broad applicability in the field of nuclear dynamics. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1751197
Publication Date:
NSF-PAR ID:
10084948
Journal Name:
Methods in enzymology
Volume:
601
Page Range or eLocation-ID:
359-389
ISSN:
0076-6879
Sponsoring Org:
National Science Foundation
More Like this
  1. Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that ‘safe’ homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here,more »we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including: imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.« less
  2. The pairing of homologous chromosomes (homologs) in meiosis is essential for distributing the correct numbers of chromosomes into haploid gametes. In budding yeast, pairing depends on the formation of 150 to 200 Spo11-mediated double-strand breaks (DSBs) that are distributed among 16 homolog pairs, but it is not known if all, or only a subset, of these DSBs contribute to the close juxtaposition of homologs. Having established a system to measure the position of fluorescently tagged chromosomal loci in three-dimensional space over time, we analyzed locus trajectories to determine how frequently and how long loci spend colocalized or apart. Continuous imagingmore »revealed highly heterogeneous cell-to-cell behavior of foci, with the majority of cells exhibiting a “mixed” phenotype where foci move into and out of proximity, even at late stages of prophase, suggesting that the axial structures of the synaptonemal complex may be more dynamic than anticipated. The observed plateaus of the mean-square change in distance (MSCD) between foci informed the development of a biophysical model of two diffusing polymers that captures the loss of centromere linkages as cells enter meiosis, nuclear confinement, and the formation of Spo11-dependent linkages. The predicted number of linkages per chromosome in our theoretical model closely approximates the small number (approximately two to four) of estimated synapsis-initiation sites, suggesting that excess DSBs have negligible effects on the overall juxtaposition of homologs. These insights into the dynamic interchromosomal behavior displayed during homolog pairing demonstrate the power of combining time-resolved in vivo analysis with modeling at the granular level.« less
  3. In this chapter, we describe a method for the recovery and analysis of alternative end-joining (alt-EJ) DNA double-strand break repair junctions following I-SceI cutting in Drosophila melanogaster embryos. Alt-EJ can be defined as a set of Ku70/80 and DNA ligase 4-independent end-joining processes that are typically mutagenic, producing deletions, insertions, and chromosomal rearrangements more frequently than higher-fidelity repair pathways such as classical nonhomologous end joining or homologous recombination. Alt-EJ has been observed to be upregulated in HR-deficient tumors and is essential for the survival and proliferation of these cells. Alt-EJ shares many initial processing steps with homologous recombination, specifically endmore »resection; therefore, studying alt-EJ repair junctions can provide useful insight into aborted HR repair. Here, we describe the injection of plasmid constructs with specific cut sites into Drosophila embryos and the subsequent recovery of alt-EJ repair products. We also describe different analytical approaches using this system and how amplicon sequencing can be used to provide mechanistic information about alt-EJ.« less
  4. DNA double-strand breaks (DSBs) occur frequently in eukaryotic cells, and the homologous recombination pathway (HR) is one of the major pathways required to repair these breaks. However, tumor cells that are able to repair DSBs are unlikely to die due to damage incurred by DNA damaging chemotherapies, such as platinum compounds. While platinum-based therapies have been effective in treating various cancers, they also carry harsh side effects, and thus ideally platinum should be used when the probability of treatment resistance is low. HR scores provide a measure for patients’ tumor’s HR capacity and have been shown to predict their chemotherapymore »response and long-term survival. Calculating this score manually from immunofluorescence microscopy images for each patient is error-prone and time-consuming. Herein, we propose an image processing pipeline that takes as input imaging data from three emission channels (representing nuclei, S-phase cells, and HR-mediated repair in a tumor slice) from an epifluorescence microscope and computes the HR score. Our open-source methodology forms a rationale to develop similar approaches in predicting chemotherapeutic responses and facilitating to make treatment decisions.« less
  5. We present high-resolution, high-speed fluorescence lifetime imaging microscopy (FLIM) of live cells based on a compressed sensing scheme. By leveraging the compressibility of biological scenes in a specific domain, we simultaneously record the time-lapse fluorescence decay upon pulsed laser excitation within a large field of view. The resultant system, referred to as compressed FLIM, can acquire a widefield fluorescence lifetime image within a single camera exposure, eliminating the motion artifact and minimizing the photobleaching and phototoxicity. The imaging speed, limited only by the readout speed of the camera, is up to 100 Hz. We demonstrated the utility of compressed FLIMmore »in imaging various transient dynamics at the microscopic scale.

    « less