skip to main content


Title: An Autonomous Surface Vehicle for Long Term Operations
Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper.  more » « less
Award ID(s):
1637876
NSF-PAR ID:
10085398
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
OCEANS 2018 MTS/IEEE Charleston
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Underwater wireless communication and network- ing are becoming key enablers of a number of critical marine and underwater applications. Experimentation is underway, in controlled environments as well as at sea, that concerns the deployment of several underwater devices providing wireless communication capabilities to sensors of different nature. Con- trolling the deployment at sea of these devices, remotely and efficiently, is paramount for enabling expedite testing of hardware and protocol development. To address this need, this paper presents the design, development, and testing of a Smart Buoy for real-time remote access to underwater devices and for provision of power and extended computational capabilities. Experimental results are shown concerning the time needed to connect with the Smart Buoy, the power consumption of its operations, and the energy harvesting intake (via solar panels) in time. We also investigate the buoy lifetime when powered by solar panels and supporting acoustic modems over varying traffic scenarios. 
    more » « less
  2. Automating operations of objects has made life easier and more convenient for billions of people, especially those with limited motor capabilities. On the other hand, even able-bodied users might not always be able to perform manual operations (e.g., both hands are occupied), and manual operations might be undesirable for hygiene purposes (e.g., contactless devices). As a result, automation systems like motion-triggered doors, remote-control window shades, contactless toilet lids have become increasingly popular in private and public environments. Yet, these systems are hampered by complex building wiring or short battery lifetimes, negating their positive benefits for accessibility, energy saving, healthcare, and other domains. In this paper we explore how these types of objects can be powered in perpetuity by the energy generated from a unique energy source - user interactions, specifically, the manual manipulations of objects by users who can afford them when they can afford them. Our assumption is that users' capabilities for object operations are heterogeneous, there are desires for both manual and automatic operations in most environments, and that automatic operations are often not needed as frequently - for example, an automatic door in a public space is often manually opened many times before a need for automatic operation shows up. The energy harvested by those manual operations would be sufficient to power that one automatic operation. We instantiate this idea by upcycling common everyday objects with devices which have various mechanical designs powered by a general-purpose backbone embedded system. We call these devices, MiniKers. We built a custom driver circuit that can enable motor mechanisms to toggle between generating powers (i.e., manual operation) and actuating objects (i.e., automatic operation). We designed a wide variety of mechanical mechanisms to retrofit existing objects and evaluated our system with a 48-hour deployment study, which proves the efficacy of MiniKers as well as shedding light into this people-as-power approach as a feasible solution to address energy needed for smart environment automation. 
    more » « less
  3. Abstract

    Human activities and climate change threaten seabirds globally, and many species are declining from already small breeding populations. Monitoring of breeding colonies can identify population trends and important conservation concerns, but it is a persistent challenge to achieve adequate coverage of remote and sensitive breeding sites. Southern giant petrels (Macronectes giganteus) exemplify this challenge: as polar, pelagic marine predators they are subject to a variety of anthropogenic threats, but they often breed in remote colonies that are highly sensitive to disturbance. Aerial remote sensing can overcome some of these difficulties to census breeding sites and explore how local environmental factors influence important characteristics such as nest-site selection and chick survival. To this end, we used drone photography to map giant petrel nests, repeatedly evaluate chick survival and quantify-associated physical and biological characteristics of the landscape at two neighboring breeding sites on Humble Island and Elephant Rocks, along the western Antarctic Peninsula in January–March 2020. Nest sites occurred in areas with relatively high elevations, gentle slopes, and high wind exposure, and statistical models predicted suitable nest-site locations based on local spatial characteristics, explaining 72.8% of deviance at these sites. These findings demonstrate the efficacy of drones as a tool to identify, map, and monitor seabird nests, and to quantify important habitat associations that may constitute species preferences or sensitivities. These may, in turn, contextualize some of the diverse population trajectories observed for this species throughout the changing Antarctic environment.

     
    more » « less
  4. Abstract

    Calls for using marine protected areas (MPAs) to achieve goals for nature and people are increasing globally. While the conservation and fisheries impacts of MPAs have been comparatively well‐studied, impacts on other dimensions of human use have received less attention. Understanding how humans engage with MPAs and identifying traits of MPAs that promote engagement is critical to designing MPA networks that achieve multiple goals effectively, equitably and with minimal environmental impact.

    In this paper, we characterize human engagement in California's MPA network, the world's largest MPA network scientifically designed to function as a coherent network (124 MPAs spanning 16% of state waters and 1300 km of coastline) and identify traits associated with higher human engagement. We assemble and compare diverse indicators of human engagement that capture recreational, educational and scientific activities across California's MPAs.

    We find that human engagement is correlated with nearby population density and that site “charisma” can expand human engagement beyond what would be predicted based on population density alone. Charismatic MPAs tend to be located near tourist destinations, have long sandy beaches and be adjacent to state parks and associated amenities. In contrast, underutilized MPAs were often more remote and lacked both sandy beaches and parking lot access.

    Synthesis and applications: These results suggest that achieving MPA goals associated with human engagement can be promoted by developing land‐based amenities that increase access to coastal MPAs or by locating new MPAs near existing amenities during the design phase. Alternatively, human engagement can be limited by locating MPAs in areas far from population centres, coastal amenities or sandy beaches. Furthermore, managers may want to prioritize monitoring, enforcement, education and outreach programmes in MPAs with traits that predict high human engagement. Understanding the extent to which human engagement impacts the conservation performance of MPAs is a critical next step to designing MPAs that minimize tradeoffs among potentially competing objectives.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology.

     
    more » « less