skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Autonomous Surface Vehicle Controls Under Changing Environmental Forces
The ability to navigate, search, and monitor dynamic marine environments such as ports, deltas, tributaries, and rivers presents several challenges to both human operated and autonomously operated surface vehicles. Human data collection and monitoring is overly taxing and inconsistent when faced with large coverage areas, disturbed environments, and potentially uninhabitable situations. In contrast, the same missions become achievable with autonomous surface vehicles (ASV) configured and capable of accurately maneuvering in such environments. The two dynamic factors that present formidable challenges to completing precise maneuvers in coastal and moving waters are currents and winds. In this work, we present novel and inexpensive methods for sensing these external forces, together with methods for accurately controlling an ASV in the presence of such external forces. The resulting platform is capable of deploying bathymetric and water quality monitoring sensors. Experimental results in the local lakes and rivers demonstrate the feasibility of the proposed approach.  more » « less
Award ID(s):
1637876
PAR ID:
10125479
Author(s) / Creator(s):
Date Published:
Journal Name:
12th Conference on Field and Service Robotics (FSR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper. 
    more » « less
  2. ABSTRACT This paper demonstrates that the multivariate monitoring methods are capable to underpin the systematic investigation of the hysteretic behaviour occurring during gradually‐varied flows. For this purpose, we present simultaneous measurements of stage, index velocity and free‐surface slope acquired continuously with high‐frequency sampling instruments deployed at several river gaging sites exposed to different storm magnitudes. The experimental evidence reveals intrinsic features of unsteady open‐channel flow mechanics that are hinted by pertinent governing equations but rarely substantiated with in situ measurements. The illustrations are intentionally made for fluvial waves propagating in lowland rivers where the relationships among flow variables are most likely displaying hysteretic phasing in the progression of the hydraulic variables and loops in their relationships. The presented measurements highlight that: (a) the hysteretic behaviour is apparent in both time‐independent and time‐dependent graphical representations of any two of the hydraulic variables; (b) the severity of the hysteresis is commensurate with the geomorphic, hydraulic and hydrological characteristics of the measurement site; and (c) there are flow monitoring paradigms that can more accurately track changes of the flow variables during gradually‐varied flows than those currently used in practice. Also discussed are research needs for advancing the understanding of the mechanisms underlying the movement and storage of water in the lowland river environments as well as for increasing the accuracy of streamflow monitoring, modelling and forecasting. 
    more » « less
  3. Unmanned vehicles, equipped with radiation detection sensors, can serve as a valuable aid to personnel responding to radiological incidents. The use of tele-operated ground vehicles avoids human exposure to hazardous environments, which in addition to radioactive contamination, might present other risks to personnel. Autonomous unmanned vehicles using algorithms for radioisotope classification, source localization, and efficient exploration allow these vehicles to conduct surveys with reduced human supervision allowing teams to address larger areas in less time. This work presents systems for autonomous radiation search with results presented in several proof-of-concept demonstrations. 
    more » « less
  4. In large scale coverage operations, such as marine exploration or aerial monitoring, single robot approaches are not ideal, as they may take too long to cover a large area. In such scenarios, multi-robot approaches are preferable. Furthermore, several real world vehicles are non-holonomic, but can be modeled using Dubins vehicle kinematics. This paper focuses on environmental monitoring of aquatic environments using Autonomous Surface Vehicles (ASVs). In particular, we propose a novel approach for solving the problem of complete coverage of a known environment by a multi-robot team consisting of Dubins vehicles. It is worth noting that both multi-robot coverage and Dubins vehicle coverage are NP-complete problems. As such, we present two heuristics methods based on a variant of the traveling salesman problem-k-TSP-formulation and clustering algorithms that efficiently solve the problem. The proposed methods are tested both in simulations to assess their scalability and with a team of ASVs operating on a 200 km 2 lake to ensure their applicability in real world. 
    more » « less
  5. Navigation and obstacle avoidance in aquatic en-vironments for autonomous surface vehicles (ASVs) in high-traffic maritime scenarios is still an open challenge, as the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) is not defined for multi-encounter situations. Current state-of-the-art methods resolve single-to-single encounters with sequential actions and assume that other obstacles follow COLREGs. Our work proposes a novel real-time non-myopic obstacle avoidance method, allowing an ASV that has only partial knowledge of the surroundings within the sensor radius to navigate in high-traffic maritime scenarios. Specifically, we achieve a holistic view of the feasible ASV action space able to avoid deadlock scenarios, by proposing (1) a clustering method based on motion attributes of other obstacles, (2) a geometric framework for identifying the feasible action space, and (3) a multi-objective optimization to determine the best action. Theoretical analysis and extensive realistic experiments in simulation considering real-world traffic scenarios demonstrate that our proposed real-time obstacle avoidance method is able to achieve safer trajectories than other state-of-the-art methods and that is robust to uncertainty present in the current information available to the ASV. 
    more » « less