skip to main content

Title: Storms Producing Large Accumulations of Small Hail

Hail-bearing storms produce substantial socioeconomic impacts each year, yet challenges remain in forecasting the type of hail threat supported by a given environment and in using radar to estimate hail sizes more accurately. One class of hail threat is storms producing large accumulations of small hail (SPLASH). This paper presents an analysis of the environments and polarimetric radar characteristics of such storms. Thirteen SPLASH events were selected to encompass a broad range of geographic regions and times of year. Rapid Refresh model output was used to characterize the mesoscale environments associated with each case. This analysis reveals that a range of environments can support SPLASH cases; however, some commonalities included large precipitable water (exceeding that day’s climatological 90th-percentile values), CAPE < 2500 J kg−1, weak storm-relative wind speeds (<10 m s−1) in the lowest few kilometers of the troposphere, and a weak component of the storm-relative flow orthogonal to the 0–6-km shear vector. Most of the storms were weak supercells that featured distinctive S-band radar signatures, including compact (<200 km2) regions of reflectivity factor > 60 dB Z, significant differential attenuation evident as negative differential reflectivity extending downrange of the hail core, and anomalously large specific differential phase KDP. The KDPvalues often approached or exceeded the operational color scale’s upper limit (10.7° km−1); reprocessing the level-II data revealed KDP>17° km−1, the highest documented in precipitation at S band. Electromagnetic scattering calculations using the T-matrix method confirm that large quantities of small melting hail mixed with heavy rain can plausibly explain the observed radar signatures.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Page Range / eLocation ID:
p. 341-364
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of theZDRarc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-levelZDRand specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and medianZDRremain relatively constant, but hook echo medianKDPand estimated number concentration (NT) increase. TheZDRarc maximum magnitude andZDRKDPseparation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor theZDRcolumn area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats.

    more » « less
  2. Severe (>2.5 cm) hail causes >$5 billion in damage annually in the United States. However, radar sizing of hail remains challenging. Typically, spheroids are used to represent hailstones in radar forward operators and to inform radar hail-sizing algorithms. However, natural hailstones can have irregular shapes and lobes; these details significantly influence the hailstone’s scattering properties. The high-resolution 3D structure of real hailstones was obtained using a laser scanner for hail collected during the 2016–17 Insurance Institute for Business and Home Safety (IBHS) Hail Field Study. Plaster casts of several record hailstones (e.g., Vivian, South Dakota, 2010) were also scanned. The S-band scattering properties of these hailstones were calculated with the discrete dipole approximation (DDA). For comparison, scattering properties of spheroidal approximations of each hailstone (with identical maximum and minimum dimensions and mass) were calculated with the T matrix. The polarimetric radar variables have errors when using spheroids, even for small hail. Spheroids generally have smaller variations in the polarimetric variables than the real hailstones. This increased variability is one reason why the correlation coefficient [Formula: see text] tends to be lower in observations than in forward-simulated cases using spheroids. Backscatter differential phase δ also is found to have large variance, particularly for large hailstones. Irregular hailstones with a thin liquid layer produce enhanced and more variable values for reflectivity factor at horizontal polarization ZHH, differential reflectivity ZDR, specific differential phase KDP, linear depolarization ratio (LDR), and δ compared with dry hailstones; [Formula: see text] is also significantly reduced.

    more » « less
  3. null (Ed.)
    Abstract Storms that produce gargantuan hail (defined here as ≥ 6 inches or 15 cm in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure, and cause injury or even death to humans and animals. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. In this study, we analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental parameters and radar signatures in these storms to storms producing other sizes of hail. We find that traditionally used environmental parameters used for severe storms prediction, such as most unstable convective available potential energy (MUCAPE) and 0–6 km vertical wind shear, display considerable overlap between gargantuan hail-producing storm environments and those that produce smaller hail. There is a slight tendency for larger MUCAPE values for gargantuan hail cases, however. Additionally, gargantuan hail-producing storms seem to have larger low-level storm-relative winds and larger updraft widths than those storms producing smaller hail, implying updrafts less diluted by entrainment and perhaps maximizing the liquid water content available for hail growth. Moreover, radar reflectivity or products derived from it are not different from cases of smaller hail sizes. However, inferred mesocyclonic rotational velocities within the hail growth region of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail categories. 
    more » « less
  4. Abstract The national upgrade of the operational weather radar network to include polarimetric capabilities has lead to numerous studies focusing on polarimetric radar signatures commonly observed in supercells. One such signature is the horizontal separation of regions of enhanced differential reflectivity ( Z DR ) and specific differential phase ( K DP ) values due to hydrometeor size sorting. Recent observational studies have shown that the orientation of this separation tends to be more perpendicular to storm motion in supercells that produce tornadoes. Although this finding has potential operational utility, the physical relationship between this observed radar signature and tornadic potential is not known. This study uses an ensemble of supercell simulations initialized with tornadic and nontornadic environments to investigate this connection. The tendency for tornadic supercells to have a more perpendicular separation orientation was reproduced, although to a lesser degree. This difference in orientation angles was caused by stronger rearward storm-relative flow in the nontornadic supercells, leading to a rearward shift of precipitation and, therefore, the enhanced K DP region within the supercell. Further, this resulted in an unfavorable rearward shift of the negative buoyancy region, which led to an order of magnitude less baroclinic generation of circulation in the nontornadic simulations compared to tornadic simulations. 
    more » « less
  5. In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere. 
    more » « less