skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Model Identification for Tensegrity Locomotion
This paper aims to identify in a practical manner unknown physical parameters, such as mechanical models of actuated robot links, which are critical in dynamical robotic tasks. Key features include the use of an off-the-shelf physics engine and the Bayesian optimization framework. The task being considered is locomotion with a high-dimensional, compliant Tensegrity robot. A key insight, in this case, is the need to project the space of models into an appropriate lower dimensional space for time efficiency. Comparisons with alternatives indicate that the proposed method can identify the parameters more accurately within the given time budget, which also results in more precise locomotion control.  more » « less
Award ID(s):
1734492 1723869
PAR ID:
10086347
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a hierarchical framework for bipedal locomotion that combines a Reinforcement Learning (RL)-based high-level (HL) planner policy for the online generation of task space commands with a model-based low-level (LL) controller to track the desired task space trajectories. Different from traditional end-to-end learning approaches, our HL policy takes insights from the angular momentum-based linear inverted pendulum (ALIP) to carefully design the observation and action spaces of the Markov Decision Process (MDP). This simple yet effective design creates an insightful mapping between a low-dimensional state that effectively captures the complex dynamics of bipedal locomotion and a set of task space outputs that shape the walking gait of the robot. The HL policy is agnostic to the task space LL controller, which increases the flexibility of the design and generalization of the framework to other bipedal robots. This hierarchical design results in a learning-based framework with improved performance, data efficiency, and robustness compared with the ALIP model-based approach and state-of-the-art learning-based frameworks for bipedal locomotion. The proposed hierarchical controller is tested in three different robots, Rabbit, a five-link underactuated planar biped; Walker2D, a seven-link fully-actuated planar biped; and Digit, a 3D humanoid robot with 20 actuated joints. The trained policy naturally learns human-like locomotion behaviors and is able to effectively track a wide range of walking speeds while preserving the robustness and stability of the walking gait even under adversarial conditions. 
    more » « less
  2. Legged locomotion is a highly promising but under–researched subfield within the field of soft robotics. The compliant limbs of soft-limbed robots offer numerous benefits, including the ability to regulate impacts, tolerate falls, and navigate through tight spaces. These robots have the potential to be used for various applications, such as search and rescue, inspection, surveillance, and more. The state-of-the-art still faces many challenges, including limited degrees of freedom, a lack of diversity in gait trajectories, insufficient limb dexterity, and limited payload capabilities. To address these challenges, we develop a modular soft-limbed robot that can mimic the locomotion of pinnipeds. By using a modular design approach, we aim to create a robot that has improved degrees of freedom, gait trajectory diversity, limb dexterity, and payload capabilities. We derive a complete floating-base kinematic model of the proposed robot and use it to generate and experimentally validate a variety of locomotion gaits. Results show that the proposed robot is capable of replicating these gaits effectively. We compare the locomotion trajectories under different gait parameters against our modeling results to demonstrate the validity of our proposed gait models. 
    more » « less
  3. null (Ed.)
    Hybrid locomotion, which combines multiple modalities of locomotion within a single robot, enables robots to carry out complex tasks in diverse environments. This paper presents a novel method for planning multi-modal locomotion trajectories using approximate dynamic programming. We formulate this problem as a shortest-path search through a state-space graph, where the edge cost is assigned as optimal transport cost along each segment. This cost is approximated from batches of offline trajectory optimizations, which allows the complex effects of vehicle under-actuation and dynamic constraints to be approximately captured in a tractable way. Our method is illustrated on a hybrid double-integrator, an amphibious robot, and a flying-driving drone, showing the practicality of the approach. 
    more » « less
  4. Hybrid locomotion, which combines multiple modalities of locomotion within a single robot, enables robots to carry out complex tasks in diverse environments. This paper presents a novel method for planning multi-modal locomotion trajectories using approximate dynamic programming. We formulate this problem as a shortest-path search through a state-space graph, where the edge cost is assigned as optimal transport cost along each segment. This cost is approximated from batches of offline trajectory optimizations, which allows the complex effects of vehicle under-actuation and dynamic constraints to be approximately captured in a tractable way. Our method is illustrated on a hybrid double-integrator, an amphibious robot, and a flying-driving drone, showing the practicality of the approach. 
    more » « less
  5. Sun, Weichao; Yao, Bin (Ed.)
    This paper introduces an analytically tractable and computationally efficient model for legged robot dynamics during locomotion on a dynamic rigid surface (DRS), along with an approximate analytical solution and a real-time walking pattern generator synthesized based on the model and solution. By relaxing the static-surface assumption, we extend the classical, time-invariant linear inverted pendulum (LIP) model for legged locomotion on a static surface to dynamic-surface locomotion, resulting in a time-varying LIP model termed as “DRS-LIP”. Sufficient and necessary stability conditions of the time-varying DRS-LIP model are obtained based on the Floquet theory. This model is also transformed into Mathieu’s equation to derive an approximate analytical solution that provides reasonable accuracy with a relatively low computational cost. Using the extended model and its solution, a walking pattern generator is developed to efficiently plan physically feasible trajectories for quadrupedal walking on a vertically oscillating surface. Finally, simulations and hardware experiments from a Laikago quadrupedal robot walking on a pitching treadmill (with a maximum vertical acceleration of 1 m/s ) confirm the accuracy and efficiency of the proposed analytical solution, as well as the efficiency, feasibility, and robustness of the pattern generator, under various surface motions and gait parameters. 
    more » « less