skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Loss of genetic diversity, recovery and allele surfing in a colonizing parasite, Geomydoecus aurei
Abstract Understanding the genetic consequences of changes in species distributions has wide‐ranging implications for predicting future outcomes of climate change, for protecting threatened or endangered populations and for understanding the history that has led to current genetic patterns within species. Herein, we examine the genetic consequences of range expansion over a 25‐year period in a parasite (Geomydoecus aurei) that is in the process of expanding its geographic range via invasion of a novel host. By sampling the genetics of 1,935G. aureilice taken from 64 host individuals collected over this time period using 12 microsatellite markers, we test hypotheses concerning linear spatial expansion, genetic recovery time and allele surfing. We find evidence of decreasing allelic richness (AR) with increasing distance from the source population, supporting a linear, stepping stone model of spatial expansion that emphasizes the effects of repeated bottleneck events during colonization. We provide evidence of post‐bottleneck genetic recovery, with average AR of infrapopulations increasing about 30% over the 225‐generation span of time observed directly in this study. Our estimates of recovery rate suggest, however, that recovery has plateaued and that this population may not reach genetic diversity levels of the source population without further immigration from the source population. Finally, we employ a grid‐based sampling scheme in the region of ongoing population expansion and provide empirical evidence for the power of allele surfing to impart genetic structure on a population, even under conditions of selective neutrality and in a place that lacks strong barriers to gene flow.  more » « less
Award ID(s):
1445708
PAR ID:
10086426
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
28
Issue:
4
ISSN:
0962-1083
Page Range / eLocation ID:
p. 703-720
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The black abalone,Haliotis cracherodii, is a large, long‐lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation‐based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present‐day size far exceeding the pre‐bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low‐risk means of population restoration for black abalone species' recovery. 
    more » « less
  2. The Kirtland's warbler (Setophaga kirtlandi) is a rare migratory passerine species and habitat specialist of the North American Jack Pine Forests. Their near extinction in the 1970s classified them as endangered and protected under the Endangered Species Act of 1973. After decades of intense conservation management, their population size recovered, and they were delisted from federal protection in 2019. We explore the genomic consequences of this harsh bottleneck and recovery by comparing the genomic architecture of two closely related species whose population sizes have remained large and stable, Hooded Warblers (Setophaga citrina) and American Redstarts (Setophaga ruticilla). We used whole‐genome sequencing to characterize the distribution of runs of homozygosity and deleterious genetic variation. We find evidence that Kirtland's warblers exhibit genetic patterns consistent with recent inbreeding. Our results also show that Kirtland's warblers carry an excess proportion of deleterious variation, which could complicate management for this conservation‐reliant species. This analysis provides a genetically informed perspective that should be thoroughly considered when delisting other species from federal protections. Through the increasing accessibility of genome sequencing technology, it will be more feasible to monitor the genetic landscape of recovering populations to ensure their long‐term survival independent of conservation intervention. 
    more » « less
  3. ABSTRACT Many insects and other animals host heritable endosymbionts that alter host fitness and reproduction. The prevalence of facultative endosymbionts can fluctuate in host populations across time and geography for reasons that are poorly understood. This is particularly true for maternally transmittedWolbachiabacteria, which infect roughly half of all insect species. For instance, the frequencies of severalwMel‐likeWolbachia, includingwMel in hostDrosophila melanogaster, fluctuate over time in certain host populations, but the specific conditions that generate temporal variation inWolbachiaprevalence are unresolved. We implemented a discrete generation model in the new R packagesymbiontmodelerto evaluate how finite‐population stochasticity contributes toWolbachiafluctuations over time in simulated host populations under a variety of conditions. Using empirical estimates from naturalWolbachia‐Drosophilasystems, we explored how stochasticity is determined by a broad range of factors, including host population size, maternal transmission rates, andWolbachiaeffects on host fitness (modeled as fecundity) and reproduction (cytoplasmic incompatibility; CI). While stochasticity generally increases when host fitness benefits and CI are relaxed, we found that a decline in the maternal transmission rate had the strongest relative impact on increasing the size of fluctuations. We infer that non‐ or weak‐CI‐causing strains likewMel, which often show evidence of imperfect maternal transmission, tend to generate larger stochastic fluctuations compared to strains that cause strong CI, likewRi inD. simulans. Additional factors, such as fluctuating host fitness effects, are required to explain the largest examples of temporal variation inWolbachia. The conditions we simulate here usingsymbiontmodelerserve as a jumping‐off point for understanding drivers of temporal and spatial variation in the prevalence ofWolbachia, the most common endosymbionts found in nature. 
    more » « less
  4. Abstract Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forP. syntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofP. syntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations. 
    more » « less
  5. Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in N e and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last decade. 
    more » « less