skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Recently Delisted Songbird Harbors Extensive Genomic Evidence of Inbreeding, Potentially Complicating Future Recovery
The Kirtland's warbler (Setophaga kirtlandi) is a rare migratory passerine species and habitat specialist of the North American Jack Pine Forests. Their near extinction in the 1970s classified them as endangered and protected under the Endangered Species Act of 1973. After decades of intense conservation management, their population size recovered, and they were delisted from federal protection in 2019. We explore the genomic consequences of this harsh bottleneck and recovery by comparing the genomic architecture of two closely related species whose population sizes have remained large and stable, Hooded Warblers (Setophaga citrina) and American Redstarts (Setophaga ruticilla). We used whole‐genome sequencing to characterize the distribution of runs of homozygosity and deleterious genetic variation. We find evidence that Kirtland's warblers exhibit genetic patterns consistent with recent inbreeding. Our results also show that Kirtland's warblers carry an excess proportion of deleterious variation, which could complicate management for this conservation‐reliant species. This analysis provides a genetically informed perspective that should be thoroughly considered when delisting other species from federal protections. Through the increasing accessibility of genome sequencing technology, it will be more feasible to monitor the genetic landscape of recovering populations to ensure their long‐term survival independent of conservation intervention.  more » « less
Award ID(s):
2131469
PAR ID:
10564576
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Evolutionary Applications
Volume:
17
Issue:
12
ISSN:
1752-4571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies.Quercus tomentella, or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico. Previous work has shown that Island Oaks on each island are genetically differentiated, but it is unclear whether assisted gene flow could enable populations to tolerate future climates. We performed whole‐genome sequencing on Island Oak individuals andQ. chrysolepis, a closely related species that hybridizes with Island Oak (127 total), to characterize genetic structure and introgression across its range and assess the relationship between genomic variation and climate. We introduce and assess three potential management strategies with different trade‐offs between conserving historic genetic structure and enabling populations to survive changing climates: the status quo approach; ecosystem preservation approach, which conserves the trees and their associated biodiversity; and species preservation approach, which conserves the species. We compare the impact of these approaches on predicted maladaptation to climate using Gradient Forest. We also introduce a climate suitability index to identify optimal pairs of seed sources and planting sites for approaches involving assisted gene flow. We found one island (Santa Rosa) that could benefit from the ecosystem preservation approach and also serve as a species preservation site. Overall, we find that both the ecosystem and species preservation approaches will do better than the status quo approach. If preserving Island Oak ecosystems is the goal, assisted dispersal into multiple sites could produce adapted populations. If the goal is to preserve a species, the Santa Rosa population would be suitable. This case study both illustrates viable conservation strategies for Island Oak and introduces a framework for tree conservation. 
    more » « less
  2. Abstract Next‐generation sequencing technologies now allow researchers of non‐model systems to perform genome‐based studies without the requirement of a (often unavailable) closely related genomic reference. We evaluated the role of restriction endonuclease (RE) selection in double‐digest restriction‐site‐associatedDNAsequencing (ddRADseq) by generating reduced representation genome‐wide data using four differentREcombinations. Our expectation was thatREselections targeting longer, more complex restriction sites would recover fewer loci thanREwith shorter, less complex sites. We sequenced a diverse sample of non‐model arachnids, including five congeneric pairs of harvestmen (Opiliones) and four pairs of spiders (Araneae). Sample pairs consisted of either conspecifics or closely related congeneric taxa, and in total 26 sample pair analyses were tested. Sequence demultiplexing, read clustering and variant calling were performed in thepyRADprogram. The 6‐base pair cutterEcoRIcombined with methylated site‐specific 4‐base pair cutterMspIproduced, on average, the greatest numbers of intra‐individual loci and shared loci per sample pair. As expected, the number of shared loci recovered for a sample pair covaried with the degree of genetic divergence, estimated with cytochrome oxidase I sequences, although this relationship was non‐linear. Our comparative results will prove useful in guiding protocol selection for ddRADseq experiments on many arachnid taxa where reference genomes, even from closely related species, are unavailable. 
    more » « less
  3. Abstract Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on atRNAligase gene (Migut.N02091;RLG1a) exhibiting unprecedented, and fitness‐relevant,CNVwithin an annual population of the yellow monkeyflowerMimulus guttatus.RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate‐frequency three‐copy variants ofRLG1a (trip+;5/35 = 14%), andtrip+lines exhibited elevatedRLG1a expression under multiple conditions.trip+carriers, in addition to being over‐represented in late‐flowering and large‐flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rareRLG1a variant (high+) that carries 250–300 copies ofRLG1a totalling ~5.7 Mb (20–40% of a chromosome). In the progeny of ahigh+carrier, Mendelian segregation of diagnostic alleles andqPCR‐based copy counts indicate thathigh+is a single tandem array unlinked to the single‐copyRLG1a locus. In the wild,high+carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; bothp < 0.01), while single‐copy individuals were twice as fecund as eitherCNVtype in a lush year (2016:p < 0.005). Our results demonstrate fluctuating selection onCNVs affecting phenological traits in a wild population, suggest that planttRNAligases mediate stress‐responsive life‐history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification. 
    more » « less
  4. Abstract Single‐nucleotide polymorphisms (SNPs) are preferred over microsatellite markers in many evolutionary studies, but have only recently been applied to studies of parentage. Evaluations ofSNPs and microsatellites for assigning parentage have mostly focused on special cases that require a relatively large number of heterozygous loci, such as species with low genetic diversity or with complex social structures. We developed 120SNPmarkers from a transcriptome assembled usingRNA‐sequencing of a songbird with the most common avian mating system—social monogamy. We compared the effectiveness of 97 novelSNPs and six previously described microsatellites for assigning paternity in the black‐throated blue warbler,Setophaga caerulescens. We show that the full panel of 97SNPs (meanHo = 0.19) was as powerful for assigning paternity as the panel of multiallelic microsatellites (meanHo = 0.86). Paternity assignments using the two marker types were in agreement for 92% of the offspring. Filtering individual samples by a 50% call rate andSNPs by a 75% call rate maximized the number of offspring assigned with 95% confidence usingSNPs. We also found that the 40 most heterozygousSNPs (meanHo = 0.37) had similar power to assign paternity as the full panel of 97SNPs. These findings demonstrate that a relatively small number of variableSNPs can be effective for parentage analyses in a socially monogamous species. We suggest that the development ofSNPmarkers is advantageous for studies that require high‐throughput genotyping or that plan to address a range of ecological and evolutionary questions. 
    more » « less
  5. ABSTRACT Studying declining and rare species is inherently challenging, particularly when the cause of rarity is emerging infectious diseases (EIDs). Tracking changes in the distribution of pathogens that cause EIDs, and the species made scarce by them, is necessary for conservation efforts, but it is often a time and resource intensive task. Here, we demonstrate how using environmental DNA (eDNA) to detect rare species—and the pathogens that threaten them—can be a powerful tool to understand disease dynamics and develop effective conservation strategies. Amphibian populations around the world have undergone rapid declines and extinctions due to the emerging fungal pathogen,Batrachochytrium dendrobatidis(Bd). We developed and validated a qPCR assay using eDNA sampling methods for some of the most imperiled amphibian species, harlequin frogs (Atelopus varius,Atelopus zeteki,andAtelopus chiriquiensis), and applied this assay in concert with a standard qPCR assay forBdin rainforest streams of Panamá. We confirmed the presence ofAtelopusat sampling locations across three regions. In addition, we used genomic analysis of eDNA samples to show thatBdin Panamá falls within the Global Panzootic Lineage, a lineage associated with disease‐induced declines. We detectedBdDNA in most of our historic sites, and its concentration in water samples correlated with stream characteristics and the pathogen load of the local amphibian community. These results suggest that some populations ofAtelopuspersist in their historic localities. They also show how eDNA analysis can be effectively used for monitoring species presence, pathogen concentrations, and the distribution and spread of pathogen lineages. EIDs are a growing threat to endangered species around the world. Simultaneous detection of rare and declining host species and their pathogens with eDNA will help to provide key insights for effective conservation management. 
    more » « less