skip to main content

Title: Makerspaces vs. engineering shops: initial undergraduate student perspectives
Makerspaces are a growing trend in engineering and STEM (Science, Technology, Engineering and Math) education at both the university and K-12 levels. These spaces which, in theory, are characterized by a community of likeminded individuals interested in digital fabrication and innovative design, are argued to provide opportunities to foster the skills sets critical to the next generation of engineers and scientists. However, spaces for making are not new to the engineering curriculum as many engineering programs have well-established machine shops orbproject labs that students utilize to complete course projects. In this work-in-progress exploratory study, the authors evaluated early undergraduate students’ perceptions of two contrasting spaces, a contemporary makerspace and a traditional engineering shop. As part of an Introduction to Engineering course, students were asked to visit the two campus spaces, identify important equipment and policies they noticed in each space, and describe their perception of how the spaces were similar or different. Based on our initial findings, we speculate that access and safety issues in engineering shops may limit their use by early year engineering undergraduates. Alternatively, digital fabrication technologies and community culture in makerspaces can provide access to a hands-on prototyping and collaborative learning environment for early year engineering students.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE Frontiers in Education Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on the development of a second-year design course intended to support student design capabilities in a coherent four-year design thread across an Electrical and Computer Engineering (ECE) curriculum. At Bucknell University students take four years of design starting by building an Internet of Things (IoT) sensor module in first year, a robust IoT product in the second year, using the product to address societal challenges in the third year, followed by a culminating capstone experience in the fourth year. While the first year introduces students broadly to the ECE curriculum, the second-year course reported here is designed to provide students’ abilities in electronic device fabrication and test and measurement, areas students at Bucknell have had little previous exposure to. This course is designed to anchor the remainder of the design sequence by giving all students the capability to independently fabricate and test robust electronic devices. The second-year course has students individually build an IoT appliance—the Digital / Analog Modular Neopixel-based Electronic Display, or DAMNED project—by going through twelve sequential steps of design from simulation through PCB layout, device and enclosure fabrication, to application development. Because this course is most students’ first encounter with electronic fabrication and testmore »and measurement techniques, the course has students build the project in twelve steps. Each weekly step is heavily scaffolded to allow students to work independently out of class. The paper discusses how such scaffolding is supported through design representations such as block diagrams, pre-class preparation, rapid feedback, and the use of campus makerspaces and educational software tools. The paper also shares results of making iterative improvement to the course structure using action research, and early indications that students are able transfer skills into subsequent design courses.« less
  2. Classes involving physical making were severely disrupted by COVID-19. As workshops, makerspaces, and fab labs shut down in Spring 2020, instructors developed new models for teaching physical prototyping, electronics production, and digital fabrication at a distance. Instructors shipped materials and equipment directly to students, converted makerspaces to job-shops, and substituted low-tech construction methods and hobbyist equipment for industrial tools. The experiences of students and instructors during the pandemic highlighted new learning opportunities when making outside the makerspace. Simultaneously, the shutdown raised new questions on the limits of remote learning for digital fabrication, electronics, and manual craft. This panel brings together experts in making to discuss their experiences teaching physical production in art, design, and engineering during the pandemic. Panelists will discuss their teaching strategies, describe what worked and what did not, and argue for how we can best support students learning hands-on skills going forward.
  3. Digital fabrication courses that relied on physical makerspaces were severely disrupted by COVID-19. As universities shut down in Spring 2020, instructors developed new models for digital fabrication at a distance. Through interviews with faculty and students and examination of course materials, we recount the experiences of eight remote digital fabrication courses. We found that learning with hobbyist equipment and online social networks could emulate using industrial equipment in shared workshops. Furthermore, at-home digital fabrication offered unique learning opportunities including more iteration, machine tuning, and maintenance. These opportunities depended on new forms of labor and varied based on student living situations. Our findings have implications for remote and in-person digital fabrication instruction. They indicate how access to tools was important, but not as critical as providing opportunities for iteration; they show how remote fabrication exacerbated student inequities; and they suggest strategies for evaluating trade-offs in remote fabrication models with respect to learning objectives.
  4. Thought must be given to how individuals from underrepresented groups (URGs) conceptualize their academic engineering identities. Black male students have been shown to face a great challenge in integrating their racial identification into their self-concept. This “balancing act” involves the navigation and negotiation between multiple social spaces. The establishment of a positive identity associated with engineering is critical to how underrepresented students establish their sense of agency and overall “fit” within the institutional and/or professional setting. Yet, because of low numbers in participant populations, many studies fail to disaggregate the experiences of individuals from URGs. Further, if makerspaces represent an avenue of hope for fostering a generation of makers and innovative thinkers prepared to address the needs and challenges of our society, it is quite plausible that without careful attention we could be building another exclusionary system through makerspaces, grounded in the acceptance of Caucasian, male experiences and perceptions as the status quo. As making could potentially impact academic progression, through early exposure and opportunities to develop confidence through building, design, iteration and community, it is critical that we understand how all students, especially those from underrepresented groups, come to affiliate with, become alienated from and/or negotiate the cultural normsmore »within these maker communities. To achieve this, it is necessary to explore the complexities of underrepresented students’ identity development. This study investigated the experiences of Black male engineering students that have also engaged in university-affiliated makerspaces as makers. Seven Black male students from a range of institution types, including Predominantly White Institutions (PWIs), Historically Black Colleges and Universities (HBCUs) and Asian American Native American Pacific Islander Institutions (AANAPI), participated in narrative interviews to ascertain stories of their personal growth and identity development. Engaging in makerspaces was found to promote agency and engineering identity for Black male undergraduates; however, makerspaces located at PWIs were found to reflect the heteronormative culture of engineering in a way that challenged smooth navigation in and through these spaces for Black men.« less
  5. The Engineer of 2020 recognizes creativity, invention, and innovation as indispensable qualities for engineering. It may be argued, however, that traditional engineering programs do not inherently foster these qualities in engineering students, and with limited resources and time, adding innovation-fostering experiences to already over-packed curricula may seem like an insurmountable challenge. Longitudinal studies carried out by the authors have shown that makerspaces can foster improvement in engineering students’ design self-efficacy, and three-part phenomenological interviews have shown that students in makerspaces engage in non-linear, open-ended, student-driven projects that require hands-on designing, prototyping, modeling, and testing. These studies provide initial evidence that makerspaces may have the potential to enhance students’ deep learning of engineering and engineering design. To arrive at the more complex cultural factors related to student involvement and success related to participation in makerspaces, we describe the processes of ethnographic methodologies we are using to study the intersections between the structure of an engineering curriculum and the learning that occurs outside of the classroom in makerspaces. Ethnographic methodologies of participant observation, unstructured and semi-structured interviews enable exploration of how students (1) interact within and construct the culture of makerspaces; (2) talk about maker space culture as important to their commitmentmore »to engineering; (3) learn within maker spaces; and (4) choose the type and direction of projects. This paper specifically describes the ethnographic methodologies used to track four different undergraduate student teams participating in a two-year senior capstone project, as well as three different student teams participating in a sophomore design class in which they use makerspaces to build a human powered vehicle for a client with a disability. Initial interpretations are presented that inform our understanding of the complex cultural system in which learning occurs, ultimately helping us to consider ways to improve university makerspaces.« less