Abstract Interannual variations in the flux of carbon dioxide (CO2) between the land surface and the atmosphere are the dominant component of interannual variations in the atmospheric CO2growth rate. Here, we investigate the potential to predict variations in these terrestrial carbon fluxes 1–10 years in advance using a novel set of retrospective decadal forecasts of an Earth system model. We demonstrate that globally-integrated net ecosystem production (NEP) exhibits high potential predictability for 2 years following forecast initialization. This predictability exceeds that from a persistence or uninitialized forecast conducted with the same Earth system model. The potential predictability in NEP derives mainly from high predictability in ecosystem respiration, which itself is driven by vegetation carbon and soil moisture initialization. Our findings unlock the potential to forecast the terrestrial ecosystem in a changing environment.
more »
« less
Predicting near-term variability in ocean carbon uptake
Abstract. Interannual variations in air–sea fluxes of carbon dioxide (CO2) impactthe global carbon cycle and climate system, and previous studies suggest thatthese variations may be predictable in the near term (from a year to a decadein advance). Here, we quantify and understand the sources of near-termpredictability and predictive skill in air–sea CO2 flux on global andregional scales by analyzing output from a novel set of retrospective decadalforecasts of an Earth system model. These forecasts exhibit the potential topredict year-to-year variations in the globally integrated air–sea CO2flux several years in advance, as indicated by the high correlation of theforecasts with a model reconstruction of past CO2 flux evolution. Thispotential predictability exceeds that obtained solely from foreknowledge ofvariations in external forcing or a simple persistence forecast, with thelongest-lasting forecast enhancement in the subantarctic Southern Ocean andthe northern North Atlantic. Potential predictability in CO2 fluxvariations is largely driven by predictability in the surface ocean partialpressure of CO2, which itself is a function of predictability in surfaceocean dissolved inorganic carbon and alkalinity. The potentialpredictability, however, is not realized as predictive skill, as indicated bythe moderate to low correlation of the forecasts with anobservationally based CO2 flux product. Nevertheless, our results suggestthat year-to-year variations in ocean carbon uptake have the potential to bepredicted well in advance and establish a precedent for forecasting air–seaCO2 flux in the near future.
more »
« less
- Award ID(s):
- 1752724
- PAR ID:
- 10087491
- Date Published:
- Journal Name:
- Earth System Dynamics
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2190-4987
- Page Range / eLocation ID:
- 45 to 57
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The Arctic marine environment plays an important role inthe global carbon cycle. However, there remain large uncertainties in howsea ice affects air–sea fluxes of carbon dioxide (CO2), partially dueto disagreement between the two main methods (enclosure and eddy covariance)for measuring CO2 flux ( ). The enclosure method has appearedto produce more credible than eddy covariance (EC), but is notsuited for collecting long-term, ecosystem-scale flux datasets in suchremote regions. Here we describe the design and performance of an EC systemto measure over landfast sea ice that addresses the shortcomingsof previous EC systems. The system was installed on a 10m tower onQikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly35km west of Cambridge Bay, Nunavut, in the Canadian Arctic Archipelago. Thesystem incorporates recent developments in the field of air–sea gasexchange by measuring atmospheric CO2 using a closed-path infrared gasanalyzer (IRGA) with a dried sample airstream, thus avoiding the known watervapor issues associated with using open-path IRGAs in low-flux environments.A description of the methods and the results from 4 months of continuousflux measurements from May through August 2017 are presented, highlightingthe winter to summer transition from ice cover to open water. We show thatthe dried, closed-path EC system greatly reduces the magnitude of measured compared to simultaneous open-path EC measurements, and for thefirst time reconciles EC and enclosure flux measurements over sea ice. Thisnovel EC installation is capable of operating year-round on solar and windpower, and therefore promises to deliver new insights into the magnitude ofCO2 fluxes and their driving processes through the annual sea icecycle.more » « less
-
Abstract. We present the development and assessment of a new flight system that uses acommercially available continuous-wave, tunable infrared laser directabsorption spectrometer to measure N2O, CO2, CO, andH2O. When the commercial system is operated in an off-the-shelfmanner, we find a clear cabin pressure–altitude dependency forN2O, CO2, and CO. The characteristics of this artifactmake it difficult to reconcile with conventional calibration methods. Wepresent a novel procedure that extends upon traditional calibrationapproaches in a high-flow system with high-frequency, short-duration samplingof a known calibration gas of near-ambient concentration. This approachcorrects for cabin pressure dependency as well as other sources of drift inthe analyzer while maintaining a ∼90% duty cycle for 1Hz sampling.Assessment and validation of the flight system with both extensive in-flightcalibrations and comparisons with other flight-proven sensors demonstrate thevalidity of this method. In-flight 1σ precision is estimated at0.05ppb, 0.10ppm, 1.00ppb, and 10ppm for N2O,CO2, CO, and H2O respectively, and traceability to WorldMeteorological Organization (WMO) standards (1σ) is 0.28ppb,0.33ppm, and 1.92ppb for N2O, CO2, and CO. We showthe system is capable of precise, accurate 1Hz airborne observations ofN2O, CO2, CO, and H2O and highlight flightdata, illustrating the value of this analyzer for studying N2Oemissions on ∼100km spatial scales.more » « less
-
Abstract. Marine phytoplankton such as bloom-forming, calcite-producingcoccolithophores, are naturally exposed to solar ultraviolet radiation (UVR,280–400nm) in the ocean's upper mixed layers. Nevertheless, the effects ofincreasing carbon dioxide (CO2)-induced ocean acidification and warming have rarelybeen investigated in the presence of UVR. We examined calcification andphotosynthetic carbon fixation performance in the most cosmopolitancoccolithophorid, Emiliania huxleyi, grown under high(1000µatm, HC; pHT: 7.70) and low (400µatm,LC; pHT: 8.02) CO2 levels, at 15∘C,20∘C and 24∘C with or without UVR. The HCtreatment did not affect photosynthetic carbon fixation at 15∘C,but significantly enhanced it with increasing temperature. Exposure to UVRinhibited photosynthesis, with higher inhibition by UVA (320–395nm) thanUVB (295–320nm), except in the HC and 24∘C-grown cells, in whichUVB caused more inhibition than UVA. A reduced thickness of the coccolith layerin the HC-grown cells appeared to be responsible for the UV-inducedinhibition, and an increased repair rate of UVA-derived damage in theHC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition.While calcification was reduced with elevated CO2 concentration,exposure to UVB or UVA affected the process differentially, with the formerinhibiting it and the latter enhancing it. UVA-induced stimulation of calcification washigher in the HC-grown cells at 15 and 20∘C, whereas at24∘C observed enhancement was not significant. The calcificationto photosynthesis ratio (Cal∕Pho ratio) was lower in the HC treatment,and increasing temperature also lowered the value. However, at 20 and24∘C, exposure to UVR significantly increased the Cal∕Phoratio, especially in HC-grown cells, by up to 100%. This implies thatUVR can counteract the negative effects of the “greenhouse” treatment onthe Cal∕Pho ratio; hence, UVR may be a key stressor when considering theimpacts of future greenhouse conditions on E. huxleyi.more » « less
-
Abstract. The magnitude and controls of particulate carbon exported from surface watersand its remineralization at depth are poorly constrained. The Carbon FluxExplorer (CFE), a Lagrangian float-deployed imaging sediment trap, has beendesigned to optically measure the hourly variations of particle flux tokilometer depths for months to seasons while relaying data in near-real timeto shore via satellite without attending ships. The main optical proxy forparticle load recorded by the CFE, volume attenuance (VA; units ofmATN cm2), while rigorously defined and highly precise, has not beenrobustly calibrated in terms of particulate organic carbon (POC), nitrogen(PN) and phosphorus (PP). In this study, a novel 3-D-printed particle samplerusing cutting edge additive manufacturing was developed and integrated withthe CFE. Two such modified floats (CFE-Cals) were deployed a total of15 times for 18–24 h periods to gain calibration imagery and samples atdepths near 150 m in four contrasting productivity environments during theJune 2017 California Current Ecosystem Long-Term Ecological Research (LTER)process study. Regression slopes for VA : POC and VA : PN (unitsmATN cm2: mmol; R2, n, p value in parentheses) were1.01×104 (0.86, 12, < 0.001) and 1.01×105(0.86, 15, < 0.001), respectively, and were not sensitive toparticle size classes or the contrasting environments encountered. PP was notwell correlated with VA, reflecting the high lability of P relative to C andN. The volume attenuance flux (VAF) to POC flux calibration is compared toprevious estimates.more » « less
An official website of the United States government

