skip to main content


Title: An Investigation of Cold-Season Short-Wave Troughs in the Great Lakes Region and Their Concurrence with Lake-Effect Clouds

The downwind shores of the Laurentian Great Lakes region often receive prolific amounts of lake-effect snowfall during the cold season (October–March). The location and intensity of this snowfall can be influenced by upper-tropospheric features such as short-wave troughs. A 7-yr cold-season climatology of 500-hPa short-wave troughs was developed for the Great Lakes region. A total of 607 short-wave troughs were identified, with an average of approximately 87 short waves per cold season. Five classes of short-wave troughs were identified on the basis of their movement through the Great Lakes region. This short-wave trough dataset was subsequently compared with the lake-effect cloud-band climatology created by N. F. Laird et al. in 2017 to determine how frequently short-wave troughs occurred concurrently with lake-effect cloud bands. Of the 607 short-wave troughs identified, 380 were concurrent with lake-effect clouds. Over 65% of these 380 short-wave troughs occurred with a lake-effect cloud band on at least four of the five Great Lakes. Short-wave troughs that rotated around the base of a long-wave trough were found to have the highest frequency of concurrence. In general, concurrence was most likely during the middle cold-season months. Further, Lake Michigan featured the highest number of concurrent events, and Lake Erie featured the fewest. It is evident that short-wave troughs are a ubiquitous feature near the Great Lakes during the cold season and have the potential to impart substantial impacts on lake-effect snowbands.

 
more » « less
NSF-PAR ID:
10087719
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
58
Issue:
3
ISSN:
1558-8424
Page Range / eLocation ID:
p. 605-614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Laurentian Great Lakes have substantial influences on regional climatology, particularly with impactful lake-effect snow events. This study examines the snowfall, cloud-inferred snow band morphology, and environment of lake-effect snow days along the southern shore of Lake Michigan for the 1997–2017 period. Suitable days for study were identified based on the presence of lake-effect clouds assessed in a previous study and extended through 2017, combined with an independent classification of likely lake-effect snow days based on independent snowfall data and weather map assessments. The primary goals are to identify lake-effect snow days and evaluate the snowfall distribution and modes of variability, the sensitivity to thermodynamic and flow characteristics within the upstream sounding at Green Bay, WI, and the influences of snowband morphology. Over 300 lake-effect days are identified during the study period, with peak mean snowfall within the lake belt extending from southwest Michigan to northern Indiana. Although multiple lake-effect morphological types are often observed on the same day, the most common snow band morphology is wind parallel bands. Relative to days with wind parallel bands, the shoreline band morphology is more common with a reduced lower-tropospheric zonal wind component within the upstream sounding at Green Bay, WI, as well as higher sea-level pressure and 500-hPa geopotential height anomalies to the north of the Great Lakes. Snowfall is sensitive to band morphology, with higher snowfall for shoreline band structures than for wind parallel bands, especially due south of Lake Michigan. Snowfall is also sensitive to thermodynamic and flow properties, with a greater sensitivity to temperature in southwest Michigan and to flow properties in northwest Indiana. 
    more » « less
  2. In the Great Lakes region, total cold-season snowfall consists of contributions from both lake-effect systems (LES) and non-LES snow events. To enhance understanding of the regional hydroclimatology, this research examined these separate contributions with a focus on the cold seasons (October–March) of 2009/2010, a time period with the number of LES days substantially less than the mean, and 2012/2013, a time period with the number of LES days notably greater than the mean, for the regions surrounding Lakes Erie, Michigan, and Ontario. In general, LES snowfall exhibited a maximum contribution in near-shoreline areas surrounding each lake while non-LES snowfall tended to provide a more widespread distribution throughout the entire study regions with maxima often located in regions of elevated terrain. The percent contribution for LES snowfall to the seasonal snowfall varied spatially near each lake with localized maxima and ranged in magnitudes from 10% to over 70%. Although total LES snowfall amounts tended to be greater during the cold season with the larger number of LES days, the percent of LES snowfall contributing to the total cold-season snowfall was not directly dependent on the number of LES days. The LES snowfall contributions to seasonal totals were found to be generally larger for Lakes Erie and Ontario during the cold season with a greater number of LES days; however, LES contributions were similar or smaller for areas in the vicinity of Lake Michigan during the cold season with a smaller number of LES days. 
    more » « less
  3. Abstract

    An investigation of lake-effect (LE) and the associated synoptic environment is presented for days when all five lakes in the Great Lakes (GL) region had LE bands (5LD). The study utilized an expanded database of observed LE clouds over the GL during 25 cold seasons (October–March) from 1997/1998 to 2021/2022. LE bands occurred on 2870 days (64% of all cold-season days). Nearly a third of all LE bands occurred during 5LD, although 5LD consisted of just 17.1% of LE days. A majority of 5LD (56.5%) had L2L and these days comprised 43.5% of all L2L occurrences. 5LD occurred with a mean of 26.1 (SD=6.2) days per cold season until 2008/2009 and then decreased to a mean of 13.8 (SD=5.5) days during subsequent cold seasons.

    January and February had the largest number of consecutive LE days in the GL with a mean of 5.7 and 5.4 days, respectively. As the number of consecutive LE days increase, both the number of 5LD and the occurrence of consecutive 5LD increase. This translates to an increased potential of heavy snowfall impacts in multiple, localized areas of the GL for extended time periods. The mean composite synoptic pattern of 5LD exhibited characteristics consistent with lake-aggregate disturbances and showed similarity to synoptic patterns favorable for LE over one or two of the GL found by previous studies. The results demonstrate that several additional areas of the GL are often experiencing LE bands when a localized area has active LE bands occurring.

     
    more » « less
  4. Abstract

    Potential factors affecting the inland penetration and orographic modulation of lake-effect precipitation east of Lake Ontario include the environmental (lake, land, and atmospheric) conditions, mode of the lake-effect system, and orographic processes associated with flow across the downstream Tug Hill Plateau (herein Tug Hill), Black River valley, and Adirondack Mountains (herein Adirondacks). In this study we use data from the KTYX WSR-88D, ERA5 reanalysis, New York State Mesonet, and Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine how these factors influence lake-effect characteristics with emphasis on the region downstream of Tug Hill. During an eight-cool-season (16 November–15 April) study period (2012/13–2019/20), total radar-estimated precipitation during lake-effect periods increased gradually from Lake Ontario to upper Tug Hill and decreased abruptly where the Tug Hill escarpment drops into the Black River valley. The axis of maximum precipitation shifted poleward across the northern Black River valley and into the northwestern Adirondacks. In the western Adirondacks, the heaviest lake-effect snowfall periods featured strong, near-zonal boundary layer flow, a deep boundary layer, and a single precipitation band aligned along the long-lake axis. Airborne profiling radar observations collected during OWLeS IOP10 revealed precipitation enhancement over Tug Hill, spillover and shadowing in the Black River valley where a resonant lee wave was present, and precipitation invigoration over the western Adirondacks. These results illustrate the orographic modulation of inland-penetrating lake-effect systems downstream of Lake Ontario and the factors favoring heavy snowfall over the western Adirondacks.

    Significance Statement

    Inland penetrating lake-effect storms east of Lake Ontario affect remote rural communities, enable a regional winter-sports economy, and contribute to a snowpack that contributes to runoff and flooding during thaws and rain-on-snow events. In this study we illustrate how the region’s three major geographic features—Tug Hill, the Black River valley, and the western Adirondacks—affect the characteristics of lake-effect precipitation, describe the factors contributing to heavy snowfall over the western Adirondacks, and provide an examples of terrain effects in a lake-effect storm observed with a specially instrumented research aircraft.

     
    more » « less
  5. A prolonged period of winter monsoonal flow brought heavy sea-effect snowfall to the Hokuriku region along the west coast of the Japanese island of Honshu from 2 to 7 February 2010. Snowfall in some locations exceeded 140 cm, but the distribution within the event was highly variable. We examine the factors contributing to these variations using data from a Japan Meteorological Agency (JMA) C-band surveillance radar, JMA soundings, surface precipitation observations, and a Weather Research and Forecasting (WRF) Model simulation. There were three distinct periods during the event. Period 1 featured relatively weak flow with precipitation confined mainly to the coast and lowlands. Precipitation maxima were located where the flow ascended: 1) over terrain-blocked air, 2) at the foot of a high flow-normal barrier, or 3) relatively unimpeded over the lower mountain ranges. Flow strengthened during period 2, yielding stronger vertical velocities over the terrain with precipitation maxima shifting inland and to higher elevation. The flow strengthened further in period 3, with the precipitation maxima shifting higher in elevation and into the lee, with almost no precipitation falling in the lowlands. Thus, greater inland penetration and enhancement of precipitation occurred as the flow speed increased, but additional factors such as the subcloud sublimation of hydrometeors and the convective instability also contribute to differences between periods 2 and 3. These results illustrate the importance of incident flow strength in modulating the distribution and enhancement of snowfall in global lake- and sea-effect regions.

     
    more » « less