skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A two-phase flow model for submarine granular flows: With an application to collapse of deeply-submerged granular columns
Award ID(s):
1706938
PAR ID:
10087733
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Water Resources
Volume:
115
Issue:
C
ISSN:
0309-1708
Page Range / eLocation ID:
286 to 300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alistarh, Dan (Ed.)
    Today’s mainstream network timing models for distributed computing are synchrony, partial synchrony, and asynchrony. These models are coarse-grained and often make either too strong or too weak assumptions about the network. This paper introduces a new timing model called granular synchrony that models the network as a mixture of synchronous, partially synchronous, and asynchronous communication links. The new model is not only theoretically interesting but also more representative of real-world networks. It also serves as a unifying framework where current mainstream models are its special cases. We present necessary and sufficient conditions for solving crash and Byzantine fault-tolerant consensus in granular synchrony. Interestingly, consensus among n parties can be achieved against f ≥ n/2 crash faults or f ≥ n/3 Byzantine faults without resorting to full synchrony. 
    more » « less
  2. Legged robot locomotion on sand slopes is challenging due to the complex dynamics of granular media and how the lack of solid surfaces can hinder locomotion. A promising strategy, inspired by ghost crabs and other organisms in nature, is to strategically interact with rocks, debris, and other obstacles to facilitate movement. To provide legged robots with this ability, we present a novel approach that leverages avalanche dynamics to indirectly manipulate objects on a granular slope. We use a Vision Transformer (ViT) to process image representations of granular dynamics and robot excavation actions. The ViT predicts object movement, which we use to determine which leg excavation action to execute. We collect training data from 100 real physical trials and, at test time, deploy our trained model in novel settings. Experimental results suggest that our model can accurately predict object movements and achieve a success rate ≥ 80% in a variety of manipulation tasks with up to four obstacles, and can also generalize to objects with different physics properties. To our knowledge, this is the first paper to leverage granular media avalanche dynamics to indirectly manipulate objects on granular slopes. 
    more » « less
  3. Aguirre, M.A.; Luding, S.; Pugnaloni, L.A.; Soto, R. (Ed.)
    In dense flowing bidisperse particle mixtures varying in size or density alone, large particles rise (driven by percolation) and heavy particles sink (driven by buoyancy). When the two particle species differ from each other in both size and density, the two segregation mechanisms either enhance (large/light and small/heavy) or oppose (large/heavy and small/light) each other. In the latter case, an equilibrium condition exists in which the two mechanisms balance and the particles no longer segregate. This leads to a methodology to design non-segregating particle mixtures by specifying particle size ratio, density ratio, and mixture concentration to achieve the equilibrium condition. Using DEM simulations of quasi-2D bounded heap flow, we show that segregation is significantly reduced for particle mixtures near the equilibrium condition. In addition, the rise-sink transition for a range of particle size and density ratios matches the predictions of the combined size and density segregation model. 
    more » « less