skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methane in Gas Shows from Boreholes in Epigenetic Permafrost of Siberian Arctic
The gas shows in the permafrost zone represent a hazard for exploration, form the surface features, and are improperly estimated in the global methane budget. They contain methane of either surficial or deep-Earth origin accumulated earlier in the form of gas or gas hydrates in lithological traps in permafrost. From these traps, it rises through conduits, which have tectonic origin or are associated with permafrost degradation. We report methane fluxes from 20-m to 30-m deep boreholes, which are the artificial conduits for gas from permafrost in Siberia. The dynamics of degassing the traps was studied using static chambers, and compared to the concentration of methane in permafrost as analyzed by the headspace method and gas chromatography. More than 53 g of CH4 could be released to the atmosphere at rates exceeding 9 g of CH4 m−2 s−1 from a trap in epigenetic permafrost disconnected from traditional geological sources over a period from a few hours to several days. The amount of methane released from a borehole exceeded the amount of the gas that was enclosed in large volumes of permafrost within a diameter up to 5 meters around the borehole. Such gas shows could be by mistake assumed as permanent gas seeps, which leads to the overestimation of the role of permafrost in global warming.  more » « less
Award ID(s):
1442262
PAR ID:
10087813
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geosciences
Volume:
9
Issue:
2
ISSN:
2076-3263
Page Range / eLocation ID:
67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reservoirs of14C-depleted methane (CH4), a potent greenhouse gas, residing beneath permafrost are vulnerable to escape where permafrost thaw creates open-talik conduits. However, little is known about the magnitude and variability of this methane source or its response to climate change. Remote-sensing detection of large gas seeps would be useful for establishing a baseline understanding of sub-permafrost methane seepage, as well as for monitoring these seeps over time. Here we explored synthetic aperture radar’s (SAR) response to large sub-permafrost gas seeps in an interior Alaskan lake. In SAR scenes from 1992 to 2011, we observed high perennial SAR L-band backscatter (σ0) from a ∼90 m-wide feature in the winter ice of interior Alaska’s North Blair Lake (NBL). Spring and fall optical imagery showed holes in the ice at the same location as the SAR anomaly. Through field work we (1) confirmed gas bubbling at this location from a large pockmark in the lakebed, (2) measured flux at the location of densest bubbles (1713 ± 290 mg CH4m−2d−1), and (3) determined the bubbles’ methane mixing ratio (6.6%), radiocarbon age (18 470 ± 50 years BP), and δ13CCH4values (−44.5 ± 0.1‰), which together may represent a mixture of sources and processes. We performed a first order comparison of SARσ0from the NBL seep and other known sub-permafrost methane seeps with diverse ice/water interface shapes in order to evaluate the variability of SAR signals from a variety of seep types. Results from single-polarized intensity and polarimetric L-band SAR decompositions as well as dual-polarized C-band SAR are presented with the aim to find the optimal SAR imaging parameters to detect large methane seeps in frozen lakes. Our study indicates the potential for SAR remote sensing to be used to detect and monitor large, sub-permafrost gas seeps in Arctic and sub-Arctic lakes. 
    more » « less
  2. This research demonstrates a new measurement and scaling approach to constrain the estimates of methane (CH4) fluxes emitted from permafrost thaw (thermokarst) lakes. Permafrost is estimated to store about 20% of the total terrestrial carbon (C) stock. Permafrost thawing releases C in part as CH4, however, there are large uncertainties in the global CH4 budget that limit the accuracy of climate change projections. Estimating how much C is released from permafrost is critical to overcome this knowledge gap. Lake CH4 fluxes are estimated by combining direct observations, geophysical mapping and satellite remote sensing along with a scaling strategy based on lake expansion rate. This research contributes to advance the understanding of CH4 fluxes from thermokarst lakes and improve atmospheric C models. 
    more » « less
  3. Non-thermal plasma Methane capture Carbon dioxide capture Metal organic framework Methanol synthesis Atmospheric remediation 1. Introduction The stabilization of CO2 and CH4 concentrations in the air to control global warming is accelerating. There are continued efforts to develop and optimize different technologies for capture and sequestration of these greenhouse gases from industrial emission sites. From these gases, CH4 is the most dominant anthropogenic greenhouse gas (after CO2). Methane can react with nitrogen oxides leading to tropospheric ozone pollution and posses a higher global warming potential (GWP) than CO2. It is 84 times more potent than CO2 over the first 20 years after release and ~28 times more potent after a century. Methane concentrations could be restored to preindustrial levels by removing ~3.2 of the 5.3 Gt of CH4 currently in the atmosphere [1]. Rather than capturing and storing the methane, CH4 could be oxidized to CO2, through the ther- modynamically favorable reaction: CH4 + 2O2 → CO2 + 2H2O; ΔHrx = –803 kJ mol–1. With the possible production of valuable condensates such as form- aldehyde and methanol when employing different reaction conditions (i. e., gas ratio, oxidant type, temperature) and rational selected catalysts. The large activation barrier associated with splitting methane’s C– H * Corresponding author. E-mail address: Maria.CarreonGarciduenas@sdsmt.edu (M.L. Carreon). https://doi.org/10.1016/j.jcou.2021.101642 The direct capture of CO2 and CH4 from the atmosphere to stabilize the concentrations in the air to control global warming is accelerating. There are continued efforts to develop and optimize different technologies for capture and sequestration of these greenhouse gases from industrial emission sites. In this work we employed MOF-177 as an efficient CO2 and CH4 adsorbent at standard temperature and pressure conditions. We demonstrated the possibility of desorbing the gases under study when employing gentle plasma pulses of He. Moreover, we per- formed the synthesis of methanol from CH4 using O2 and CO2 as oxidants respectively in the presence of MOF- 177. We observed the highest conversion for the CH4 + O2 system when employing the MOF-177 at (5:1) (CH4: O2) flow ratio of 23.5 % and methanol selectivity of 17.65 %. While the best performance for the CH4 + CO2 system at the same conditions i.e., (5:1) (CH4: O2) flow ratio was 18.4 % for the methane conversion and 11.68 % for the selectivity towards methanol. We expect this preliminary understanding of the adsorption-reaction system under non-thermal plasma environment can lead to future atmospheric remediation technologies. 
    more » « less
  4. Abstract. In the global methane budget, the largest natural sourceis attributed to wetlands, which encompass all ecosystems composed ofwaterlogged or inundated ground, capable of methane production. Among them,northern peatlands that store large amounts of soil organic carbon have beenfunctioning, since the end of the last glaciation period, as long-termsources of methane (CH4) and are one of the most significant methanesources among wetlands. To reduce uncertainty of quantifying methane flux in theglobal methane budget, it is of significance to understand the underlyingprocesses for methane production and fluxes in northern peatlands. A methanemodel that features methane production and transport by plants, ebullitionprocess and diffusion in soil, oxidation to CO2, and CH4 fluxes tothe atmosphere has been embedded in the ORCHIDEE-PEAT land surface modelthat includes an explicit representation of northern peatlands.ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributedon both the Eurasian and American continents in the northern boreal andtemperate regions. Data assimilation approaches were employed to optimizedparameters at each site and at all sites simultaneously. Results show thatmethanogenesis is sensitive to temperature and substrate availability overthe top 75 cm of soil depth. Methane emissions estimated using single siteoptimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average ofyearly methane emissions). While using the multi-site optimization (MSO),methane emissions are overestimated by 5 g CH4 m−2 yr−1 onaverage across all investigated sites (i.e., 37 % lower than the siteaverage of yearly methane emissions). 
    more » « less
  5. Abstract This study explores the carbon stability in the Arctic permafrost following the sea‐level transgression since the Last Glacial Maximum (LGM). The Arctic permafrost stores a significant amount of organic carbon sequestered as frozen particulate organic carbon, solid methane hydrate and free methane gas. Post‐LGM sea‐level transgression resulted in ocean water, which is up to 20°C warmer compared to the average annual air mass, inundating, and thawing the permafrost. This study develops a one‐dimensional multiphase flow, multicomponent transport numerical model and apply it to investigate the coupled thermal, hydraulic, microbial, and chemical processes occurring in the thawing subsea permafrost. Results show that microbial methane is produced and vented to the seawater immediately upon the flooding of the Arctic continental shelves. This microbial methane is generated by the biodegradation of the previously frozen organic carbon. The maximum seabed methane flux is predicted in the shallow water where the sediment has been warmed up, but the remaining amount of organic carbon is still high. It is less likely to cause seabed methane emission by methane hydrate dissociation. Such a situation only happens when there is a very shallow (∼200 m depth) intra‐permafrost methane hydrate, the occurrence of which is limited. This study provides insights into the limits of methane release from the ongoing flooding of the Arctic permafrost, which is critical to understand the role of the Arctic permafrost in the carbon cycle, ocean chemistry and climate change. 
    more » « less