skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves
Abstract This study explores the carbon stability in the Arctic permafrost following the sea‐level transgression since the Last Glacial Maximum (LGM). The Arctic permafrost stores a significant amount of organic carbon sequestered as frozen particulate organic carbon, solid methane hydrate and free methane gas. Post‐LGM sea‐level transgression resulted in ocean water, which is up to 20°C warmer compared to the average annual air mass, inundating, and thawing the permafrost. This study develops a one‐dimensional multiphase flow, multicomponent transport numerical model and apply it to investigate the coupled thermal, hydraulic, microbial, and chemical processes occurring in the thawing subsea permafrost. Results show that microbial methane is produced and vented to the seawater immediately upon the flooding of the Arctic continental shelves. This microbial methane is generated by the biodegradation of the previously frozen organic carbon. The maximum seabed methane flux is predicted in the shallow water where the sediment has been warmed up, but the remaining amount of organic carbon is still high. It is less likely to cause seabed methane emission by methane hydrate dissociation. Such a situation only happens when there is a very shallow (∼200 m depth) intra‐permafrost methane hydrate, the occurrence of which is limited. This study provides insights into the limits of methane release from the ongoing flooding of the Arctic permafrost, which is critical to understand the role of the Arctic permafrost in the carbon cycle, ocean chemistry and climate change.  more » « less
Award ID(s):
2317541
PAR ID:
10491228
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
38
Issue:
2
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jones, Benjamin (Ed.)
    Permafrost sediments contain one of the largest reservoirs of organic carbon on Earth that is relatively stable when it remains frozen. As air temperatures increase, the shallow permafrost thaws which allows this organic matter to be converted into potent greenhouse gases such as methane (CH4) and carbon dioxide (CO2) through microbial processes. Along the Beaufort Sea coast in the vicinity of the Tuktoyaktuk Peninsula, Northwest Territories, Canada, warming air temperatures are causing the active layer above permafrost to deepen, and a number of active periglacial processes are causing rapid erosion of previously frozen permafrost. In this paper, we consider the biogeochemical consequences of these processes on the permafrost sediments found at Tuktoyaktuk Island. Our goals were to document the in situ carbon characteristics which can support microbial activity, and then consider rates of such activity if the permafrost material were to warm even further. Samples were collected from a 12mpermafrost core positioned on the top of the island adjacent to an eroding coastal bluff. Downcore CH4, total organic carbon and dissolved organic carbon (DOC) concentrations and stable carbon isotopes revealed variable in situ CH4 concentrations down core with a sub-surface peak just below the current active layer. The highest DOC concentrations were observed in the active layer. Controlled incubations of sediment from various depths were carried out from several depths anaerobically under thawed (5°C and 15°C) and under frozen (−20°C and −5°C) conditions. These incubations resulted in gross production rates of CH4 and CO2 that increased upon thawing, as expected, but also showed appreciable production rates under frozen conditions. This dataset presents the potential for sediments below the active layer to produce potent greenhouse gases, even under frozen conditions, which could be an important atmospheric source in the actively eroding coastal zone even prior to thawing. 
    more » « less
  2. Abstract Groundwater is projected to become an increasing source of freshwater and nutrients to the Arctic Ocean as permafrost thaws, yet few studies have quantified groundwater inputs to Arctic coastal waters under contemporary conditions. New measurements along the Alaska Beaufort Sea coast show that dissolved organic carbon and nitrogen (DOC and DON) concentrations in supra-permafrost groundwater (SPGW) near the land-sea interface are up to two orders of magnitude higher than in rivers. This dissolved organic matter (DOM) is sourced from readily leachable organic matter in surface soils and deeper centuries-to millennia-old soils that extend into thawing permafrost. SPGW delivers approximately 400–2100 m3of freshwater, 14–71 kg of DOC, and 1–4 kg of DON to the coastal ocean per km of shoreline per day during late summer. These substantial fluxes are expected to increase as massive stocks of frozen organic matter in permafrost are liberated in a warming Arctic. 
    more » « less
  3. This dataset are produced by a manuscript (Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves)  to be submitted to the Journal of Geophysical Research - Global Biogeochemical Cycles.  I The file "MethaneEmission_Permafrost" contains the predicted  temperature, pressure, pore water salinity, ice stable zone, methane hydrate stable zone, ice saturation, methane hydrate saturation, free methane gas saturation, labile organic carbon content, stable organic carbon content, and methanogenesis rate from seafloor to 1200 m depth from 18,000 years before present to 2,000 years after present for 8 different simulation scenarios.  The file "Seabed_Methane_Flux" contains the predicted seabed methane emission rate from 18,000 years before present to 2,000 years after present for 8 different simulation scenarios.  Detailed information about the model could be found in the paper Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves.    
    more » « less
  4. null (Ed.)
    Lakes in the permafrost zone have been proposed to serve as key outlets for methane and carbon dioxide emissions. However, there has been no geological record of the hydrological and biogeochemical responses of lakes throughout the thawing of surrounding permafrost. We use multiple biomarker and isotopic proxies to reconstruct hydrological and biogeochemical changes in Lake Wudalianchi in northeastern China during regional thawing of the permafrost. We show permafrost thawing, as indicated by lignin degradation, initiated rapid lake water freshening as a result of the opening of groundwater conduits, and negative organic δ13C excursion due to increased inorganic and organic carbon fluxes. These hydrological changes were followed, with an ~5–7 yr delay, by abrupt and persistent increases in microbial lake methanotrophy and methanogenesis, indicating enhanced anaerobic organic decomposition and methane emissions from lakes as permafrost thaws. Our data provide a detailed assessment of the processes involved during permafrost thaw, and highlight the importance of lakes in ventilating greenhouse gases to the atmosphere. 
    more » « less
  5. The cyclic growth and decay of continental ice sheets can be reconstructed from the history of global sea level. Sea level is relatively well constrained for the Last Glacial Maximum (LGM, 26,500 to 19,000 y ago, 26.5 to 19 ka) and the ensuing deglaciation. However, sea-level estimates for the period of ice-sheet growth before the LGM vary by > 60 m, an uncertainty comparable to the sea-level equivalent of the contemporary Antarctic Ice Sheet. Here, we constrain sea level prior to the LGM by reconstructing the flooding history of the shallow Bering Strait since 46 ka. Using a geochemical proxy of Pacific nutrient input to the Arctic Ocean, we find that the Bering Strait was flooded from the beginning of our records at 46 ka until 35.7 - 2.4 + 3.3 ka. To match this flooding history, our sea-level model requires an ice history in which over 50% of the LGM’s global peak ice volume grew after 46 ka. This finding implies that global ice volume and climate were not linearly coupled during the last ice age, with implications for the controls on each. Moreover, our results shorten the time window between the opening of the Bering Land Bridge and the arrival of humans in the Americas. 
    more » « less