skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing pump line phase offset of a single-soliton Kerr comb by dual comb interferometry
Award ID(s):
1809784
PAR ID:
10087901
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
44
Issue:
6
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 1460
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we propose a special type of a tree tensor network that has the geometry of a comb—a one-dimensional (1D) backbone with finite 1D teeth projecting out from it. This tensor network is designed to provide an effective description of higher-dimensional objects with special limited interactions or, alternatively, one-dimensional systems composed of complicated zero-dimensional objects. We provide details on the best numerical procedures for the proposed network, including an algorithm for variational optimization of the wave function as a comb tensor network and the transformation of the comb into a matrix product state. We compare the complexity of using a comb versus alternative matrix product state representations using density matrix renormalization group algorithms. As an application, we study a spin-1 Heisenberg model system which has a comb geometry. In the case where the ends of the teeth are terminated by spin-1/2 spins, we find that Haldane edge states of the teeth along the backbone form a critical spin-1/2 chain, whose properties can be tuned by the coupling constant along the backbone. By adding next-nearest-neighbor interactions along the backbone, the comb can be brought into a gapped phase with a long-range dimerization along the backbone. The critical and dimerized phases are separated by a Kosterlitz-Thouless phase transition, the presence of which we confirm numerically. Finally, we show that when the teeth contain an odd number of spins and are not terminated by spin-1/2's, a special type of comb edge states emerge. 
    more » « less
  2. Optical frequency combs have enabled distinct advantages in broadband, high-resolution spectroscopy and precision interferometry. However, quantum mechanics ultimately limits the metrological precision achievable with laser frequency combs. Quantum squeezing has led to substantial measurement improvements with continuous wave lasers, but experiments demonstrating metrological advantage with squeezed combs are less developed. Using the Kerr effect in nonlinear optical fiber, a 1-gigahertz frequency comb centered at 1560 nanometers is amplitude-squeezed by >3 decibels (dB) over a 2.5-terahertz bandwidth. Dual-comb interferometry yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio nearly 3 dB beyond the shot-noise limit. The quantum noise reduction leads to a twofold quantum speedup in the determination of gas concentration, with implications for high-speed measurements of multiple species in dynamic chemical environments. 
    more » « less
  3. The classic self-referenced frequency comb acts as an unrivaled ruler for precision optical metrology in both time and frequency. Two decades after its invention, the frequency comb is now used in numerous active sensing applications. Many of these applications, however, are limited by the tradeoffs inherent in the rigidity of the comb output and operate far from quantum-limited sensitivity. Here we demonstrate an agile programmable frequency comb where the pulse time and phase are digitally controlled with +/- 2 attosecond accuracy. This agility enables quantum-limited sensitivity in sensing applications since the programmable comb can be configured to coherently track weak returning pulse trains at the shot-noise limit. To highlight its capabilities, we use this programmable comb in a ranging system, reducing the detection threshold by ~5,000-fold to enable nearly quantum-limited ranging at mean pulse photon number of 1/77 while retaining the full accuracy and precision of a rigid frequency comb. Beyond ranging and imaging, applications in time/frequency metrology, comb-based spectroscopy, pump-probe experiments, and compressive sensing should benefit from coherent control of the comb-pulse time and phase. 
    more » « less
  4. Abstract Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications. In the past decade, the state-of-the-art systems have reached a point where the signal-to-noise ratio per unit acquisition time is fundamentally limited by shot noise from vacuum fluctuations. To address the issue, we propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance. To analyze the performance of real systems, we develop a quantum model of dual-comb spectroscopy that takes practical noises into consideration. Based on this model, we propose quantum combs with side-band entanglement around each comb lines to suppress the shot noise in heterodyne detection. Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications. Furthermore, the quantum comb can be engineered using nonlinear optics and promises near-term experimentation. 
    more » « less
  5. Abstract Dual-comb spectroscopy has been proven beneficial in molecular characterization but remains challenging in the mid-infrared region due to difficulties in sources and efficient photodetection. Here we introduce cross-comb spectroscopy, in which a mid-infrared comb is upconverted via sum-frequency generation with a near-infrared comb of a shifted repetition rate and then interfered with a spectral extension of the near-infrared comb. We measure CO2absorption around 4.25 µm with a 1-µm photodetector, exhibiting a 233-cm−1instantaneous bandwidth, 28000 comb lines, a single-shot signal-to-noise ratio of 167 and a figure of merit of 2.4 × 106Hz1/2. We show that cross-comb spectroscopy can have superior signal-to-noise ratio, sensitivity, dynamic range, and detection efficiency compared to other dual-comb-based methods and mitigate the limits of the excitation background and detector saturation. This approach offers an adaptable and powerful spectroscopic method outside the well-developed near-IR region and opens new avenues to high-performance frequency-comb-based sensing with wavelength flexibility. 
    more » « less