skip to main content

Title: DF-Net: Unsupervised Joint Learning of Depth and Flow Using Cross-Task Consistency
We present an unsupervised learning framework for simultaneously training single-view depth prediction and optical flow estimation models using unlabeled video sequences. Existing unsupervised methods often exploit brightness constancy and spatial smoothness priors to train depth or flow models. In this paper, we propose to leverage geometric consistency as additional supervisory signals. Our core idea is that for rigid regions we can use the predicted scene depth and camera motion to synthesize 2D optical flow by backprojecting the induced 3D scene flow. The discrepancy between the rigid flow (from depth prediction and camera motion) and the estimated flow (from optical flow model) allows us to impose a cross-task consistency loss. While all the networks are jointly optimized during training, they can be applied independently at test time. Extensive experiments demonstrate that our depth and flow models compare favorably with state-of-the-art unsupervised methods.
Authors:
; ;
Award ID(s):
1755785
Publication Date:
NSF-PAR ID:
10087931
Journal Name:
European Conference on Computer Vision
Sponsoring Org:
National Science Foundation
More Like this
  1. Disentangling the sources of visual motion in a dynamic scene during self-movement or ego motion is important for autonomous navigation and tracking. In the dynamic image segments of a video frame containing independently moving objects, optic flow relative to the next frame is the sum of the motion fields generated due to camera and object motion. The traditional ego-motion estimation methods assume the scene to be static, and the recent deep learning-based methods do not separate pixel velocities into object- and ego-motion components. We propose a learning-based approach to predict both ego-motion parameters and object-motion field (OMF) from image sequences using a convolutional autoencoder while being robust to variations due to the unconstrained scene depth. This is achieved by: 1) training with continuous ego-motion constraints that allow solving for ego-motion parameters independently of depth and 2) learning a sparsely activated overcomplete ego-motion field (EMF) basis set, which eliminates the irrelevant components in both static and dynamic segments for the task of ego-motion estimation. In order to learn the EMF basis set, we propose a new differentiable sparsity penalty function that approximates the number of nonzero activations in the bottleneck layer of the autoencoder and enforces sparsity more effectively than L1-more »and L2-norm-based penalties. Unlike the existing direct ego-motion estimation methods, the predicted global EMF can be used to extract OMF directly by comparing it against the optic flow. Compared with the state-of-the-art baselines, the proposed model performs favorably on pixelwise object- and ego-motion estimation tasks when evaluated on real and synthetic data sets of dynamic scenes.« less
  2. Synthetic data is highly useful for training machine learning systems performing image-based 3D reconstruction, as synthetic data has applications in both extending existing generalizable datasets and being tailored to train neural networks for specific learning tasks of interest. In this paper, we introduce and utilize a synthetic data generation suite capable of generating data given existing 3D scene models as input. Specifically, we use our tool to generate image sequences for use with Multi-View Stereo (MVS), moving a camera through the virtual space according to user-chosen camera parameters. We evaluate how the given camera parameters and type of 3D environment affect how applicable the generated image sequences are to the MVS task using five pre-trained neural networks on image sequences generated from three different 3D scene datasets. We obtain generated predictions for each combination of parameter value and input image sequence, using standard error metrics to analyze the differences in depth predictions on image sequences across 3D datasets, parameters, and networks. Among other results, we find that camera height and vertical camera viewing angle are the parameters that cause the most variation in depth prediction errors on these image sequences.
  3. Raynal, Ann M. ; Ranney, Kenneth I. (Ed.)
    Most research in technologies for the Deaf community have focused on translation using either video or wearable devices. Sensor-augmented gloves have been reported to yield higher gesture recognition rates than camera-based systems; however, they cannot capture information expressed through head and body movement. Gloves are also intrusive and inhibit users in their pursuit of normal daily life, while cameras can raise concerns over privacy and are ineffective in the dark. In contrast, RF sensors are non-contact, non-invasive and do not reveal private information even if hacked. Although RF sensors are unable to measure facial expressions or hand shapes, which would be required for complete translation, this paper aims to exploit near real-time ASL recognition using RF sensors for the design of smart Deaf spaces. In this way, we hope to enable the Deaf community to benefit from advances in technologies that could generate tangible improvements in their quality of life. More specifically, this paper investigates near real-time implementation of machine learning and deep learning architectures for the purpose of sequential ASL signing recognition. We utilize a 60 GHz RF sensor which transmits a frequency modulation continuous wave (FMWC waveform). RF sensors can acquire a unique source of information that ismore »inaccessible to optical or wearable devices: namely, a visual representation of the kinematic patterns of motion via the micro-Doppler signature. Micro-Doppler refers to frequency modulations that appear about the central Doppler shift, which are caused by rotational or vibrational motions that deviate from principle translational motion. In prior work, we showed that fractal complexity computed from RF data could be used to discriminate signing from daily activities and that RF data could reveal linguistic properties, such as coarticulation. We have also shown that machine learning can be used to discriminate with 99% accuracy the signing of native Deaf ASL users from that of copysigning (or imitation signing) by hearing individuals. Therefore, imitation signing data is not effective for directly training deep models. But, adversarial learning can be used to transform imitation signing to resemble native signing, or, alternatively, physics-aware generative models can be used to synthesize ASL micro-Doppler signatures for training deep neural networks. With such approaches, we have achieved over 90% recognition accuracy of 20 ASL signs. In natural environments, however, near real-time implementations of classification algorithms are required, as well as an ability to process data streams in a continuous and sequential fashion. In this work, we focus on extensions of our prior work towards this aim, and compare the efficacy of various approaches for embedding deep neural networks (DNNs) on platforms such as a Raspberry Pi or Jetson board. We examine methods for optimizing the size and computational complexity of DNNs for embedded micro-Doppler analysis, methods for network compression, and their resulting sequential ASL recognition performance.« less
  4. This paper presents a novel method for pedestrian detection and tracking by fusing camera and LiDAR sensor data. To deal with the challenges associated with the autonomous driving scenarios, an integrated tracking and detection framework is proposed. The detection phase is performed by converting LiDAR streams to computationally tractable depth images, and then, a deep neural network is developed to identify pedestrian candidates both in RGB and depth images. To provide accurate information, the detection phase is further enhanced by fusing multi-modal sensor information using the Kalman filter. The tracking phase is a combination of the Kalman filter prediction and an optical flow algorithm to track multiple pedestrians in a scene. We evaluate our framework on a real public driving dataset. Experimental results demonstrate that the proposed method achieves significant performance improvement over a baseline method that solely uses image-based pedestrian detection.
  5. Robust estimation of camera motion under the presence of outlier noise is a fundamental problem in robotics and computer vision. Despite existing efforts that focus on detecting motion and scene degeneracies, the best existing approach that builds on Random Consensus Sampling (RANSAC) still has non-negligible failure rate. Since a single failure canlead to the failure of the entire visual simultaneous localization and mapping, it is important to further improve the robust estimation algorithm. We propose a new robust camera motion estimator (RCME) by incorporating two main changes: a model-sample consistency test at the model instantiation stepand an inlier set quality test that verifies model-inlier consistency using differential entropy. We have implemented our RCME algorithm and tested it under many public datasets. The results have shown a consistent reduction in failure rate when comparing to the RANSAC-based Gold Standard approach and two recent variations of RANSAC methods.