Three mononuclear six-coordinate Co( ii )-pseudohalide complexes [Co(L)X 2 ] with two N-donor pseudohalido coligands occupying the cis -positions (X = NCS − ( 1 ), NCSe − ( 2 ) or N(CN) 2 − ( 3 )), and a five-coordinate complex [Co(L)(NCO)][B(C 6 H 5 ) 4 ] ( 4 ) [L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC)] have been prepared and structurally characterized. Easy-plane magnetic anisotropy for 1–3 and easy-axis anisotropy for 4 were revealed via the analyses of the direct-current magnetic data, high-frequency and -field EPR (HFEPR) spectra and ab initio theoretical calculations. They display slow magnetic relaxations under an external applied dc field. Typically, two slow relaxation processes were found in 1 and 2 while only one relaxation process occurs in 3 and 4 . The Raman-like mechanism is found to be dominant in the studied temperature range in 1 . For 2–4 , the Raman process is dominant in the low temperature region, while the Orbach mechanism dominates in the high temperature range.
more »
« less
Cationic magnesium hydride [MgH] + stabilized by an NNNN-type macrocycle
A magnesium hydride cation [(L)MgH] + supported by a macrocyclic ligand (L = Me 4 TACD; 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) has been prepared by partial protonolysis of a mixed amide hydride [(L)MgH 2 Mg{N(SiMe 3 ) 2 } 2 ] and shown to undergo a variety of reactions with unsaturated substrates, including pyridine.
more »
« less
- Award ID(s):
- 1658652
- PAR ID:
- 10088162
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 55
- Issue:
- 22
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 3199 to 3202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Two five-coordinate mononuclear Co( ii ) complexes [Co(12-TMC)X][B(C 6 H 5 ) 4 ] (L = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane (12-TMC), X = Cl − ( 1 ), Br − ( 2 )) have been studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes have a distorted square pyramidal geometry with the Co( ii ) ion lying above the basal plane constrained by the rigid tetradentate macrocyclic ligand. In contrast to the reported five-coordinate Co( ii ) complex [Co(12-TMC)(NCO)][B(C 6 H 5 ) 4 ] ( 3 ) exhibiting easy-axis anisotropy, an easy-plane magnetic anisotropy was found for 1 and 2 via the analyses of the direct-current magnetic data and HF-EPR spectroscopy. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements demonstrated that complexes 1 and 2 show slow magnetic relaxation at an applied dc field. Ab initio calculations were performed to reveal the impact of the terminal ligands on the nature of the magnetic anisotropies of this series of five-coordinate Co( ii ) complexes.more » « less
-
When irradiated with blue light in the presence of a Lewis base (L), [CpW(CO) 3 ] 2 undergoes metal–metal bond cleavage followed by a disproportionation reaction to form [CpW(CO) 3 L] + and [CpW(CO) 3 ] − . Here, we show that in the presence of pyridinium tetrafluoroborate, [CpW(CO) 3 ] − reacts further to form a metal hydride complex CpW(CO) 3 H. The rection was monitored through in situ photo 1 H NMR spectroscopy experiments and the mechanism of light-driven hydride formation was investigated by determining quantum yields of formation. Quantum yields of formation of CpW(CO) 3 H correlate with I −1/2 (I = photon flux on our sample tube), indicating that the net disproportionation of [CpW(CO) 3 ] 2 to form the hydride precursor [CpW(CO) 3 ] − occurs primarily through a radical chain mechanism.more » « less
-
Abstract A methodology to access reactive hydride moieties is highly desirable, yet limited. Multimetallic hydride fragments are notable for their heightened reactivity and catalysis, but deliberate access to these species is lacking. In this highlight, we discuss recent developments by our group in the design of a new heterometallic complex that invokes an architecture designed to provide modular access to reactive hydride moieties by leveraging metal hydrides in combination with pendent donors to a model heterotrimetallic Ni–(Al–H)2 complex. An amplification of insertion-based reactivity has been examined in the hydrofunctionalization of quinolines, and our complex substantially outperformed the parent aluminum hydride LAlH (L = ligand). A potential rationale for the dramatically increased reactivity, and a further examination of these motifs and methodology in catalysis are also discussed. 1. Introduction 2. Heterometallic Hydride Design and Characterization 3. Amplification in Catalysis 4. Summary and Outlookmore » « less
-
A C–H bond activation strategy based on electrochemical activation of a metal hydride is introduced. Electrochemical oxidation of ( tBu4 PCP)IrH 4 ( tBu4 PCP is [1,3-( t Bu 2 PCH 2 )-C 6 H 3 ] − ) in the presence of pyridine derivatives generates cationic Ir hydride complexes of the type [( tBu4 PCP)IrH(L)] + (where L = pyridine, 2,6-lutidine, or 2-phenylpyridine). Facile deprotonation of [( tBu4 PCP)IrH(2,6-lutidine)] + with the phosphazene base tert -butylimino-tris(pyrrolidino)phosphorane, t BuP 1 (pyrr), results in selective C–H activation of 1,2-difluorobenzene (1,2-DFB) solvent to generate ( tBu4 PCP)Ir(H)(2,3-C 6 F 2 H 3 ). The overall electrochemical C–H activation reaction proceeds at room temperature without need for chemical activation by a sacrificial alkene hydrogen acceptor. This rare example of undirected electrochemical C–H activation holds promise for the development of future catalytic processes.more » « less
An official website of the United States government

