We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Ourmore »
Dynamic Pricing of Wireless Internet Based on Usage and Stochastically Changing Capacity
Problem definition: Inspired by new developments in dynamic spectrum access, we study the dynamic pricing of wireless Internet access when demand and capacity (bandwidth) are stochastic. Academic/practical relevance: The demand for wireless Internet access has increased enormously. However, the spectrum available to wireless service providers is limited. The industry has, thus, altered conventional license-based spectrum access policies through unlicensed spectrum operations. The additional spectrum obtained through these operations has stochastic capacity. Thus, the pricing of this service by the service provider has novel challenges. The problem considered in this paper is, therefore, of high practical relevance and new to the academic literature. Methodology: We study this pricing problem using a Markov decision process model in which customers are posted dynamic prices based on their bandwidth requirement and the available capacity. Results: We characterize the structure of the optimal pricing policy as a function of the system state and of the input parameters. Because it is impossible to solve this problem for practically large state spaces, we propose a heuristic dynamic pricing policy that performs very well, particularly when the ratio of capacity to demand rate is low. Managerial implications: We demonstrate the value of using a dynamic heuristic pricing policy more »
- Award ID(s):
- 1731833
- Publication Date:
- NSF-PAR ID:
- 10088262
- Journal Name:
- Manufacturing & service operations management
- ISSN:
- 1523-4614
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The emergence of the sharing economy in urban transportation networks has enabled new fast, convenient and accessible mobility services referred to as Mobilty-on-Demand systems (e.g., Uber, Lyft, DiDi). These platforms have flourished in the last decade around the globe and face many operational challenges in order to be competitive and provide good quality of service. A crucial step in the effective operation of these systems is to reduce customers' waiting time while properly selecting the optimal fleet size and pricing policy. In this paper, we jointly tackle three operational decisions: (i) fleet size, (ii) pricing, and (iii) rebalancing, in order to maximize the platform's profit or its customers' welfare. To accomplish this, we first devise an optimization framework which gives rise to a static policy. Then, we elaborate and propose dynamic policies that are more responsive to perturbations such as unexpected increases in demand. We test this framework in a simulation environment using three case studies and leveraging traffic flow and taxi data from Eastern Massachusetts, New York City, and Chicago. Our results show that solving the problem jointly could increase profits between 1% and up to 50%, depending on the benchmark. Moreover, we observe that the proposed fleet sizemore »
-
Price-based revenue management is an important problem in operations management with many practical applications. The problem considers a seller who sells one or multiple products over T consecutive periods and is subject to constraints on the initial inventory levels of resources. Whereas, in theory, the optimal pricing policy could be obtained via dynamic programming, computing the exact dynamic programming solution is often intractable. Approximate policies, such as the resolving heuristics, are often applied as computationally tractable alternatives. In this paper, we show the following two results for price-based network revenue management under a continuous price set. First, we prove that a natural resolving heuristic attains O(1) regret compared with the value of the optimal policy. This improves the [Formula: see text] regret upper bound established in the prior work by Jasin in 2014. Second, we prove that there is an [Formula: see text] gap between the value of the optimal policy and that of the fluid model. This complements our upper bound result by showing that the fluid is not an adequate information-relaxed benchmark when analyzing price-based revenue management algorithms. Funding: This work was supported in part by the National Science Foundation [Grant CMMI-2145661].
-
We consider the periodic review dynamic pricing and inventory control problem with fixed ordering cost. Demand is random and price dependent, and unsatisfied demand is backlogged. With complete demand information, the celebrated [Formula: see text] policy is proved to be optimal, where s and S are the reorder point and order-up-to level for ordering strategy, and [Formula: see text], a function of on-hand inventory level, characterizes the pricing strategy. In this paper, we consider incomplete demand information and develop online learning algorithms whose average profit approaches that of the optimal [Formula: see text] with a tight [Formula: see text] regret rate. A number of salient features differentiate our work from the existing online learning researches in the operations management (OM) literature. First, computing the optimal [Formula: see text] policy requires solving a dynamic programming (DP) over multiple periods involving unknown quantities, which is different from the majority of learning problems in OM that only require solving single-period optimization questions. It is hence challenging to establish stability results through DP recursions, which we accomplish by proving uniform convergence of the profit-to-go function. The necessity of analyzing action-dependent state transition over multiple periods resembles the reinforcement learning question, considerably more difficult thanmore »
-
The property of (quasi-)reversibility of Markov chains have led to elegant characterization of steady-state distribution for complex queueing networks, e.g. celebrated Jackson networks, BCMP (Baskett, Chandi, Muntz, Palacois) and Kelly theorem. In a nutshell, despite the complicated interaction, in the steady-state, the queues in such networks exhibit independence and subsequently lead to explicit calculations of distributional properties of the queuing network that may seem impossible at the outset. The model of stochastic processing network (cf. Harrison 2000) captures variety of dynamic resource allocation problems including the flow-level networks used for modeling bandwidth sharing in the Internet, switched networks (cf. Shah, Wischik 2006) for modeling packet scheduling in the Internet router and wireless medium access, and hybrid flow-packet networks for modeling job-and-packet level scheduling in data centers. Unlike before, an appropriate resource allocation or scheduling policy is required in such networks to achieve good performance. Given the complexity, asymptotic analytic approaches such as fluid model or Lyapunov-Foster criteria to establish positive-recurrence and heavy traffic or diffusion approximation to characterize the scaled steady-state distribution became method of choice. A remarkable progress has been made along these lines over the past few decades, but there is a need for much more to matchmore »