skip to main content


Title: Characterization of the Sinorhizobium meliloti HslUV and ClpXP Protease Systems in Free-Living and Symbiotic States
ABSTRACT Symbiotic nitrogen fixation (SNF) in the interaction between the soil bacteria Sinorhizobium meliloti and legume plant Medicago sativa is carried out in specialized root organs called nodules. During nodule development, each symbiont must drastically alter their proteins, transcripts, and metabolites in order to support nitrogen fixation. Moreover, bacteria within the nodules are under stress, including challenges by plant antimicrobial peptides, low pH, limited oxygen availability, and strongly reducing conditions, all of which challenge proteome integrity. S. meliloti stress adaptation, proteome remodeling, and quality control are controlled in part by the large oligomeric protease complexes HslUV and ClpXP1. To improve understanding of the roles of S. meliloti HslUV and ClpXP1 under free-living conditions and in symbiosis with M. sativa , we generated Δ hslU , Δ hslV , Δ hslUV , and Δ clpP1 knockout mutants. The shoot dry weight of M. sativa plants inoculated with each deletion mutant was significantly reduced, suggesting a role in symbiosis. Further, slower free-living growth of the Δ hslUV and Δ clpP1 mutants suggests that HslUV and ClpP1 were involved in adapting to heat stress, the while Δ hslU and Δ clpP1 mutants were sensitive to kanamycin. All deletion mutants produced less exopolysaccharide and succinoglycan, as shown by replicate spot plating and calcofluor binding. We also generated endogenous C-terminal enhanced green fluorescent protein (eGFP) fusions to HslU, HslV, ClpX, and ClpP1 in S. meliloti . Using anti-eGFP antibodies, native coimmunoprecipitation experiments with proteins from free-living and nodule tissues were performed and analyzed by mass spectrometry. The results suggest that HslUV and ClpXP were closely associated with ribosomal and proteome quality control proteins, and they identified several novel putative protein-protein interactions. IMPORTANCE Symbiotic nitrogen fixation (SNF) is the primary means by which biologically available nitrogen enters the biosphere, and it is therefore a critical component of the global nitrogen cycle and modern agriculture. SNF is the result of highly coordinated interactions between legume plants and soil bacteria collectively referred to as rhizobia, e.g., Medicago sativa and S. meliloti , respectively. Accomplishing SNF requires significant proteome changes in both organisms to create a microaerobic environment suitable for high-level bacterial nitrogenase activity. The bacterial protease systems HslUV and ClpXP are important in proteome quality control, in metabolic remodeling, and in adapting to stress. This work shows that S. meliloti HslUV and ClpXP are involved in SNF, in exopolysaccharide production, and in free-living stress adaptation.  more » « less
Award ID(s):
1645590
NSF-PAR ID:
10088286
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
201
Issue:
7
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stabb, Eric V. (Ed.)
    ABSTRACT Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA ( i ncreased s ymbiotic e ffectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant’s regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity. 
    more » « less
  2. Summary

    The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacteriumSinorhizobium meliloti1021 is needed for an effective symbiosis withMedicagospp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on theLotus japonicusMtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes ofS. melilotimutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐typeMedicago truncatulaplants and inMtlyk10mutant plants. On wild‐type plants,S. melilotistrains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. TheseS. melilotimutants induced a more severe infection phenotype onMtlyk10mutant plants. Nodulation by succinoglycan‐defective strains was achieved byin transrescue with a Nod factor‐deficientS. melilotimutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation inM. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.

     
    more » « less
  3. null (Ed.)
    In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization–mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization–mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule. 
    more » « less
  4. Abstract

    In theMedicago truncatula-Sinorhizobium melilotisymbiosis, chemical signaling initiates rhizobial infection of root nodule tissue, where a large portion of the bacteria are endocytosed into root nodule cells to function in nitrogen-fixing organelles. These intracellular bacteria are subjected to an arsenal of plant-derived nodule-specific cysteine-rich (NCR) peptides, which induce the physiological changes that accompany nitrogen fixation. NCR peptides drive these intracellular bacteria toward terminal differentiation. The bacterial peptidase HrrP was previously shown to degrade host-derived NCR peptides and give the bacterial symbionts greater fitness at the expense of host fitness. ThehrrPgene is found in roughly 10% ofSinorhizobiumisolates, as it is carried on an accessory plasmid. The objective of the present study is to identify peptidase genes in the core genome ofS. melilotithat modulate symbiotic outcome in a manner similar to the accessoryhrrPgene. In an overexpression screen of annotated peptidase genes, we identified one such symbiosis-associated peptidase (sap) gene,sapA(SMc00451). When overexpressed,sapAleads to a significant decrease in plant fitness. Its promoter is active in root nodules, with only weak expression evident under free-living conditions. The SapA enzyme can degrade a broad range of NCR peptides in vitro.

     
    more » « less
  5. Abstract

    Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix−). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix− nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix− nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.

     
    more » « less