According to recent field studies, almost half of the New Particle Formation (NPF) events occur aloft, in a residual layer, near the top of the boundary layer. Therefore, measurements of the meteorological parameters, precursor gas concentrations, and aerosol loadings conducted at the ground level are often not representative of the conditions where the NPFs take place. This paper presents new measurements obtained during the Turbulent Flux Measurements of the Residual Layer Nucleation Particles, conducted at the Southern Great Plains research site. Vertical turbulent fluxes of 3–10 nm‐sized particles were measured using a sonic anemometer and two condensation particle counters with nominal cutoff diameters of
Platinum multipods are attractive for catalytic and electrocatalytic applications owing to their highly open, branched structure and thus high specific surface area. A number of methods have been reported for the synthesis of Pt multipods, but they are all limited in terms of throughput due to the use of batch reactors. Here we report the use of a fluidic device for the continuous and scalable synthesis of Pt multipods with sizes controlled in the ranges of 3–5 nm and 2–3 nm for the length and width, respectively, of the branched arms. The facile protocol involves the use of
- Award ID(s):
- 1634687
- PAR ID:
- 10088362
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemNanoMat
- Volume:
- 5
- Issue:
- 5
- ISSN:
- 2199-692X
- Page Range / eLocation ID:
- p. 599-605
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 3 nm and 10 nm mounted at the top of the 10‐m telescoping tower. Aerosol number size distribution (5–300 nm) was determined through the ground‐based Scanning Mobility Particle Sizers. The size selected (15–50 nm) particle hygroscopicity was derived with the Humidified Tandem Differential Mobility Analyzer. The ground level observations were supplemented by vertically‐resolved measurements of horizontal and vertical wind speeds and aerosol backscatter. The data analysis suggests that (a) turbulent flux measurements of 3–10 nm particles can distinguish between near‐surface and residual‐layer small particle events; (b) sub‐50 nm particles had a hygroscopicity value of 0.2, suggesting that organic compounds dominate atmospheric nanoparticle chemical composition at the site; and (c) current methodologies are inadequate for estimating the dry deposition velocity of sub‐10 nm particles because it is not feasible to measure particle concentration very near the surface, in the diffusion sublayer. -
Abstract Vertically aligned carbon nanofibers (VACNFs) are promising supports for oxygen reduction reaction (ORR) electrocatalysts in fuel cells. Although experimentally these catalytic systems have shown great potential, there is lack of molecular understanding of the catalytic sites and reaction mechanisms. This work investigated the origin of the ORR reactivities of the platinum catalysts on multi‐edged VACNFs (Pt/VACNF) using a multiscale modeling approach combining Density Functional Theory (DFT) and classical Molecular Dynamics (MD) simulations. Based on the ReaxFF potential, all nanoscale Pt particles (Pt55, P100, and Pt147) are stabilized by the open edges located axially along the VACNF walls. The calculated first‐shell coordination numbers,
, of surface Pt atoms are 6.63, 7.27, and 7.85, respectively, suggesting that the percentage of low coordination sites increases as the particle size decreases. The adsorption energies of OOH, O, and OH on Pt55were systematically probed using DFT calculations. These adsorption energies retain a linear correlation against the generalized coordination numbers ( ). For Pt nanoparticles supported on VACNF, we found that the OOH and OH bind stronger than on Pt (111) by 0.14 and 0.17 eV, respectively, which can hinder the ORR activity with lower limiting potential than Pt (111). Our theoretical prediction is in good agreement with the linear sweeping voltammetry that revealed a left shift of the half‐wave potential. -
Abstract To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6
C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1 C (47% of target) on average, for infrared studies with feedback control ( n = 3) vs. by 2.2C (80% of target) on average for infrared with constant wattage designs ( n = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses. -
Abstract The hydration of the two most reactive phases of ordinary Portland cement (OPC), tricalcium silicate (C3S), and tricalcium aluminate (C3A) is successfully halted when the activity of water (
) falls below critical thresholds of 0.70 and 0.45, respectively. It has been established that the reduction in relative humidity (RH) and suppresses the hydration of all anhydrous phases in OPC, including less explored phases like dicalcium silicate, that is, belite (β‐C2S). However, the degree of suppression, that is, the critical threshold, for β‐C2S, standalone has yet to be established. This study utilizes isothermal microcalorimetry and X‐ray diffraction techniques to elucidate the influence of on the hydration of ‐C2S suspensions via incremental replacements of water with isopropanol (IPA). Experimentally, this study shows that with increasing IPA replacements, hydration is increasingly suppressed until eventually brought to a halt at a critical threshold of approximately 27.7% IPA on a weight basis (wt.%IPA). From thermodynamic estimations, the exact critical threshold and solubility product constant of ‐C2S ( ) are established as 0.913 and 10−12.68, respectively. This study enables enhanced understanding of β‐C2S reactivity and provides thermodynamic parameters during the hydration of β‐C2S‐containing cementitious systems such as OPC‐based and calcium aluminate‐based systems. -
Abstract Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd and
distributions. We use the Cd and climatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and . Our calculations reveal that dissolved Cd, like , is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd and into sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd and In particular, the surface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative to in the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper than in the subsurface ocean, and the regeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in the relationship and should be considered when interpreting paleoceanographic Cd records.