SUMMARY Sorghum is an important food and feed crop globally; its production is hampered by anthracnose disease caused by the fungal pathogenColletotrichum sublineola(Cs). Here, we report identification and characterization ofANTHRACNOSE RESISTANCE GENE 2(ARG2) encoding a nucleotide‐binding leucine‐rich repeat (NLR) protein that confers race‐specific resistance toCsstrains.ARG2is one of a cluster of severalNLRgenes initially identified in the sorghum differential line SC328C that is resistant to someCsstrains. This cluster shows structural and copy number variations in different sorghum genotypes. Different sorghum lines carrying independentARG2alleles provided the genetic validation for the identity of theARG2gene.ARG2expression is induced byCs, and chitin inducesARG2expression in resistant but not in susceptible lines. ARG2‐mediated resistance is accompanied by higher expression of defense and secondary metabolite genes at early stages of infection, and anthocyanin and zeatin metabolisms are upregulated in resistant plants. Interestingly, ARG2 localizes to the plasma membrane when transiently expressed inNicotiana benthamiana. Importantly,ARG2plants produced higher shoot dry matter than near‐isogenic lines carrying the susceptible allele suggesting an absence of anARG2associated growth trade‐off. Furthermore, ARG2‐mediated resistance is stable at a wide range of temperatures. Our observations open avenues for resistance breeding and for dissecting mechanisms of resistance.
more »
« less
Resistance Is Not Futile: Grain Resistance Controls on Observed Critical Shields Stress Variations
- Award ID(s):
- 1734752
- PAR ID:
- 10088718
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We solve a long-standing challenge to the integrity of votes cast without the supervision of a voting booth: ``improper influence,'' which we define as any combination of vote buying and voter coercion. In comparison with previous proposals, our system is the first in the literature to protect against a strong adversary who learns all of the voter's keys---we call this property ``extreme coercion resistance.'' Our approach allows each voter, or their trusted agents (which we call ``hedgehogs''), to ``nullify'' (effectively cancel) their vote in a way that is unstoppable and irrevocable, and such that the nullification action is forever unattributable to that voter or their hedgehog(s). We demonstrate the security of VoteXX in the {universal composability} model. Additionally we provide concrete implementations of sub-protocols---including inalienable authentication, decentralized bulletin boards, and anonymous communication channels---that are usually left as abstract assumptions in the literature. As in many other coercion-resistant systems, voters are authorized to vote with public-private keys. Each voter registers their public keys with the Election Authority (EA) in a way that convinces the EA that the voter has complete knowledge of their private keys. Voters concerned about losing their private keys can themselves, or by delegating to one or more hedgehog(s), monitor the bulletin board for malicious ballots cast with their keys, and can act to nullify these ballots in a privacy-preserving manner with zero-knowledge proofs. In comparison with previous proposals, our system makes fewer assumptions and protects against a stronger adversary. For example, votexx makes none of the following assumptions made by previous systems: the voter must complete registration before being coerced; the election will not close before the voter can cast a ballot after coercion; the voter needs to generate a fake password to evade coercion; and the voter knows an honest Election Authority official.more » « less
An official website of the United States government

