skip to main content


Title: Dynamical stabilization in delafossite nitrides for solar energy conversion
Delafossite structured ternary nitrides, ABN 2 , have been of recent experimental investigation for applications such as tandem solar and photoelectrochemical cells. We present a thorough first principles computational investigation of their stability, electronic structure, and optical properties. Nine compounds, where A = Cu, Ag, Au and B = V, Nb, Ta, were studied. For three of these compounds, CuTaN 2 , CuNbN 2 , and AgTaN 2 , our computations agree well with experimental results. Optimized lattice parameters, formation energies, and mechanical properties have been computed using the generalized gradient approximation (GGA). Phonon density of states computed at zero-temperature shows that all compounds are dynamically unstable at low temperatures. Including finite-temperature anharmonic effects stabilizes all compounds at 300 K, with the exception of AgVN 2 . Analysis of Crystal Orbital Hamiltonian Populations (COHP) provides insight into the bonding and antibonding characters of A–N and B–N pairs. Instability at low temperatures can be attributed to strong A–N antibonding character near the Fermi energy. B–N bonding is found to be crucial in maintaining stability of the structure. AgVN 2 is the only compound to display significant B–N antibonding below the Fermi energy, as well as the strongest degree of A–N antibonding, both of which provide explanation for the sustained instability of this compound up to 900 K. Hybrid functional calculations of electronic and optical properties show that real static dielectric constants in the semiconductors are related to corresponding band gaps through the Moss relation. CuTaN 2 , CuNbN 2 , AgTaN 2 , AgNbN 2 , AgVN 2 , AuTaN 2 , and AuNbN 2 exhibit indirect electronic band gaps while CuVN 2 and AuVN 2 are metallic. Imaginary parts of the dielectric function are characterized by d–d interband transitions in the semiconductors and d–d intraband transitions in the metals. Four compounds, CuTaN 2 , CuNbN 2 , AgTaN 2 , and AgNbN 2 , are predicted to exhibit large light absorption in the range of 1.0 to 1.7 eV, therefore making these materials good candidates for solar-energy conversion applications. Two compounds, AuTaN 2 and AuNbN 2 , have band gaps and absorption onsets near the ideal range for obtaining high solar-cell conversion efficiency, suggesting that these compounds could become potential candidates as absorber materials in tandem solar cells or for band-gap engineering by alloying.  more » « less
Award ID(s):
1629230
NSF-PAR ID:
10089431
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
42
ISSN:
2050-7488
Page Range / eLocation ID:
20852 to 20860
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diamond like semiconductors (DLS) have emerged as candidates for thermoelectric energy conversion. Towards understanding and optimizing performance, we present a comprehensive investigation of the electronic properties of two DLS phases, quaternary Cu 2 HgGeTe 4 and related ordered vacancy compound Hg 2 GeTe 4 , including thermodynamic stability, defect chemistry, and transport properties. To establish the thermodynamic link between the related but distinct phases, the stability region for both is visualized in chemical potential space. In spite of their similar structure and bonding, we show that the two materials exhibit reciprocal behaviors for dopability. Cu 2 HgGeTe 4 is degenerately p-type in all environments despite its wide stability region, due to the presence of low-energy acceptor defects V Cu and Cu Hg and is resistant to extrinsic n-type doping. Meanwhile Hg 2 GeTe 4 has a narrow stability region and intrinsic behavior due to the relatively high formation energy of native defects, but presents an opportunity for bi-polar doping. While these two compounds have similar structure, bonding, and chemical constituents, the reciprocal nature of their dopability emerges from significant differences in band edge positions. A Brouwer band diagram approach is utilized to visualize the role of native defects on carrier concentrations, dopability, and transport properties. This study elucidates the doping asymmetry between two solid-solution forming DLS phases Cu 2 HgGeTe 4 and Hg 2 GeTe 4 by revealing the defect chemistry of each compound, and suggests design strategies for defect engineering of DLS phases. 
    more » « less
  2. Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal–metal and metal–chalcogenide interactions. Herein, we present Ir 6 In 32 S 21 , a novel semiconducting subchalcogenide compound that crystallizes in a new structure type in the polar P 31 m space group, with unit cell parameters a = 13.9378(12) Å, c = 8.2316(8) Å, α = β = 90°, γ = 120°. The compound has a large band gap of 1.48(2) eV, and photoemission and Kelvin probe measurements corroborate this semiconducting behavior with a valence band maximum (VBM) of −4.95(5) eV, conduction band minimum of −3.47(5) eV, and a photoresponse shift of the Fermi level by ∼0.2 eV in the presence of white light. X-ray absorption spectroscopy shows absorption edges for In and Ir do not indicate clear oxidation states, suggesting that the numerous coordination environments of Ir 6 In 32 S 21 make such assignments ambiguous. Electronic structure calculations confirm the semiconducting character with a nearly direct band gap, and electron localization function (ELF) analysis suggests that the origin of the gap is the result of electron transfer from the In atoms to the S 3p and Ir 5d orbitals. DFT calculations indicate that the average hole effective masses near the VBM (1.19 m e ) are substantially smaller than the average electron masses near the CBM (2.51 m e ), an unusual feature for most semiconductors. The crystal and electronic structure of Ir 6 In 32 S 21 , along with spectroscopic data, suggest that it is neither a true intermetallic nor a classical semiconductor, but somewhere in between those two extremes. 
    more » « less
  3. In this work, we investigated bonding features of 15 ruthenium(II) nitrile complexes of the type [Ru(tpy)(L)-(CH 3 CN)] n+ , containing the tridentate tpy ligand (tpy = 2,2′:6′,2″-terpyridine) and various bidentate ancillary ligands L; 12 compounds originally synthesized by Loftus et al. [J. Phys. Chem. C 123, 10291–10299 (2019)] and three new complexes. We utilized local vibrational force constants derived from the local mode theory as a quantitative measure of bond strength complemented with the topological analysis of the electron density and the natural bond orbital analysis. Loftus et al. suggested that nitrile dissociation occurs after light induced singlet–triplet transition of the original complexes and they used as a measure of nitrile release efficiency quantum yields for ligand exchange in water. They observed larger quantum yields for complexes with smaller singlet–triplet energy gaps. The major goal of this work was to assess how the Ru–NC and Ru–L bond strengths in these 15 compounds relate to and explain the experimental data of Loftus et al., particularly focusing on the question whether there is a direct correlation between Ru–NC bond strength and measured quantum yield. Our study provides the interesting result that the compounds with the highest quantum yields also have the strongest Ru–NC bonds suggesting that breaking the Ru–NC bond is not the driving force for the delivery process rather than the change of the metal framework as revealed by first results of a unified reaction valley approach investigation of the mechanism. Compounds with the highest quantum yield show larger electronic structure changes upon singlet–triplet excitation, i.e., larger changes in bond strength, covalency, and difference between the singlet and triplet HOMOs, with exception of the compound 12. In summary, this work provides new insights into the interplay of local properties and experimental quantum yields forming in synergy a useful tool for fine tuning of existing and future design of new nitrile releasing ruthenium compounds. We hope that this work will bring theoretical and experimental studies closer together and serves as an incubator for future collaboration between computational chemists and their experimental colleagues. 
    more » « less
  4. Metal clusters with 10 to 100 atoms supported by a solid surface show electronic structure typical of molecules and require ab initio treatments starting from their atomic structure, and they also can display collective electronic phenomena similar to plasmons in metal solids. We have employed ab initio electronic structure results from two different density functionals (PBE and the hybrid HSE06) and a reduced density matrix treatment of the dissipative photodynamics to calculate light absorbance by the large Ag clusters Ag N , N = 33, 37(open shell) and N = 32, 34 (closed shell), adsorbed at the Si(111) surface of a slab, and forming nanostructured surfaces. Results on light absorption are quite different for the two functionals, and are presented here for light absorbances using orbitals and energies from the hybrid functional giving correct energy band gaps. Absorption of Ag clusters on Si increases light absorbance versus photon energy by large percentages, with peak increases found in regions of photon energies corresponding to localized plasmons. The present metal clusters are large enough to allow for modelling with continuum dielectric treatments of their medium. A mesoscopic Drude–Lorentz model is presented in a version suitable for the present structures, and provides an interpretation of our results. The calculated range of plasmon energies overlaps with the range of solar photon energies, making the present structures and properties relevant to applications to solar photoabsorption and photocatalysis. 
    more » « less
  5. In a quest for Pb-free perovskites suitable for solar energy applications, Cs 2 TiBr 6 has recently been reported as a promising compound, with appropriate optical and electrical properties as well as high stability under environmental stresses. In this study, we pursue investigation on this compound, demonstrating phase pure Cs 2 TiBr 6 powder formation using solution synthesis and providing complementary experimental characterization and theoretical calculations. An experimental absorption onset of around 2.0 eV is extracted and a weak broad photoluminescence is measured. Density functional theory calculations predict an indirect bandgap, parity-forbidden for both the direct and indirect transitions, which explains the weak and Stokes shifted luminescence. Additionally, we highlight the strong instability of Cs 2 TiBr 6 powder in ambient atmosphere. Therefore, our experimental results supported by theoretical calculations differ from previous results and raise doubts on the suitability of Cs 2 TiBr 6 in its pristine form for solar energy applications. 
    more » « less