skip to main content


Title: The Resistivity Size Effect in Epitaxial Ru(0001) and Co(0001) Layers
Ru(0001) and Co(0001) films with thickness d ranging from 5 to 300 nm are sputter deposited onto Al2O3(0001) substrates in order to quantify and compare the resistivity size effect. Both metals form epitaxial single crystal layers with their basal planes parallel to the substrate surface and exhibit a root-mean-square roughness < 0.4 nm for Ru and < 0.9 nm for Co. Transport measurements on these layers have negligible resistance contributions from roughness and grain boundary scattering which allows direct quantification of electron surface scattering. The measured resistivity ρ vs d is well described by the classical Fuchs-Sondheimer model, indicating a mean free path for transport within the basal plane of λ = 6.7 ± 0.3 nm for Ru and λ = 19.5 ± 1.0 nm for Co. Bulk Ru is 36% more resistive than Co; in contrast, Ru(0001) layers with d ≤ 25 nm are more conductive than Co(0001) layers, which is attributed to the shorter λ for Ru. The determined λ-values are utilized in combination with the Fuchs-Sondheimer and Mayadas-Shatzkes models to predict and compare the resistance of polycrystalline interconnect lines, assuming a grain boundary reflection coefficient R = 0.4 and accounting for the thinner barrier/adhesion layers available to Ru and Co metallizations. This results in predicted 10 nm half-pitch line resistances for Ru, Co, and Cu of 1.0, 2.2, and 2.1 kΩ/µm, respectively.  more » « less
Award ID(s):
1740271 1712752
NSF-PAR ID:
10089436
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2018 IEEE Nanotechnology Symposium (ANTS), Albany, NY, 2018
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Co electrodeposition was performed onto single crystal Ru(0001) and polycrystalline Ru films to study the influence of such seed layers on the growth of epitaxial Co(0001). The effect of misfit strain on the electrodeposited Co(0001) films was studied using 60 and 10 nm-thick Ru(0001) seed layers, where the misfit strains of the Co layer on the two Ru(0001) seed layers are 7.9% and 9.6%, respectively. Despite a large misfit strain of 7.9%, the planar growth of Co(0001) was achieved up to a thickness of 42 nm before a transition to island growth was observed. Epitaxial Co films electrodeposited onto 10 nm Ru(0001) showed increased roughness when compared with Co electrodeposited onto the 60 nm seed layer. Co electrodeposition onto polycrystalline Ru resulted in a rough, polycrystalline film with faceted growth. Electrochemical experiments and simulations were used to study the influence of [Co2+] and solution pH on the throughput of the electrodeposition process. By increasing [Co2+] from 1 to 20 mM, the deposition rate of Co(0001) increased from 0.23 nm min−1to 0.88 nm min−1at an applied current density of −80μA cm−2.

     
    more » « less
  2. Abstract

    Metal‐assisted electrochemical nanoimprinting (Mac‐Imprint) scales the fabrication of micro‐ and nanoscale 3D freeform geometries in silicon and holds the promise to enable novel chip‐scale optics operating at the near‐infrared spectrum. However, Mac‐Imprint of silicon concomitantly generates mesoscale roughness (e.g., protrusion size ≈45 nm) creating prohibitive levels of light scattering. This arises from the requirement to coat stamps with nanoporous gold catalyst that, while sustaining etchant diffusion, imprints its pores (e.g., average diameter ≈42 nm) onto silicon. In this work, roughness is reduced to sub‐10 nm levels, which is in par with plasma etching, by decreasing pore size of the catalyst via dealloying in far‐from equilibrium conditions. At this level, single‐digit nanometric details such as grain‐boundary grooves of the catalyst are imprinted and attributed to the resolution limit of Mac‐Imprint, which is argued to be twice the Debye length (i.e., 1.7 nm)—a finding that broadly applies to metal‐assisted chemical etching. Last, Mac‐Imprint is employed to produce single‐mode rib‐waveguides on pre‐patterned silicon‐on‐insulator wafers with root‐mean‐square line‐edge roughness less than 10 nm while providing depth uniformity (i.e., 42.9 ± 5.5 nm), and limited levels of silicon defect formation (e.g., Raman peak shift < 0.1 cm−1) and sidewall scattering.

     
    more » « less
  3. With the advances in nanofabrication technology, horizontally aligned and well-defined nitrogen-doped ultrananocrystalline diamond nanostripes can be fabricated with widths in the order of tens of nanometers. The study of the size-dependent electron transport properties of these nanostructures is crucial to novel electronic and electrochemical applications. In this paper, 100 nm thick n-type ultrananocrystalline diamond thin films were synthesized by microwave plasma-enhanced chemical vapor deposition method with 5% N2 gas in the plasma during the growth process. Then the nanostripes were fabricated using standard electron beam lithography and reactive ion etching techniques. The electrical transport properties of the free-standing single nanostripes of different widths from 75 to 150 nm and lengths from 1 to 128 μm were investigated. The study showed that the electrical resistivity of the n-type ultrananocrystalline diamond nanostripes increased dramatically with the decrease in the nanostripe width. The nanostripe resistivity was nearly doubted when the width was reduced from 150 nm to 75 nm. The size-dependent variability in conductivity could originate from the imposed diffusive scattering of the nanostripe surfaces which had a further compounding effect to reinforce the grain boundary scattering. 
    more » « less
  4. Abstract

    The effect of hydraulic resistance on the downstream evolution of the water surface profilehin a sloping channel covered by a uniform dense rod canopy following the instantaneous collapse of a dam was examined using flume experiments. Near the head of the advancing wavefront, wherehmeets the rods, the conventional picture of a turbulent boundary layer was contrasted to a distributed drag force representation. The details of the boundary layer around the rod and any interferences between rods were lumped into a drag coefficientCd. The study demonstrated the following: In the absence of a canopy, the Ritter solution agreed well with the measurements. When the canopy was represented by an equivalent wall friction as common when employing Manning's formula with constant roughness, it was possible to match the measured wavefront speed but not the precise shape of the water surface profile. However, upon adopting a distributed drag force with a constantCd, the agreement between measured and modeledhwas quite satisfactory at all positions and times. The measurements and model calculations suggested that the shape ofhnear the wavefront was quasilinear with longitudinal distance for a constantCd. The computed constantCd(≈0.4) was surprisingly much smaller than theCd(≈1) reported in uniform flow experiments with staggered cylinders for the same element Reynolds number. This finding suggested that drag reduction mechanisms associated with unsteadiness, nonuniformity, transient waves, and other flow disturbances were more likely to play a role when compared to conventional sheltering effects.

     
    more » « less
  5. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less