skip to main content

Title: The Resistivity Size Effect in Epitaxial Ru(0001) and Co(0001) Layers
Ru(0001) and Co(0001) films with thickness d ranging from 5 to 300 nm are sputter deposited onto Al2O3(0001) substrates in order to quantify and compare the resistivity size effect. Both metals form epitaxial single crystal layers with their basal planes parallel to the substrate surface and exhibit a root-mean-square roughness < 0.4 nm for Ru and < 0.9 nm for Co. Transport measurements on these layers have negligible resistance contributions from roughness and grain boundary scattering which allows direct quantification of electron surface scattering. The measured resistivity ρ vs d is well described by the classical Fuchs-Sondheimer model, indicating a mean free path for transport within the basal plane of λ = 6.7 ± 0.3 nm for Ru and λ = 19.5 ± 1.0 nm for Co. Bulk Ru is 36% more resistive than Co; in contrast, Ru(0001) layers with d ≤ 25 nm are more conductive than Co(0001) layers, which is attributed to the shorter λ for Ru. The determined λ-values are utilized in combination with the Fuchs-Sondheimer and Mayadas-Shatzkes models to predict and compare the resistance of polycrystalline interconnect lines, assuming a grain boundary reflection coefficient R = 0.4 and accounting for the thinner barrier/adhesion layers available to more » Ru and Co metallizations. This results in predicted 10 nm half-pitch line resistances for Ru, Co, and Cu of 1.0, 2.2, and 2.1 kΩ/µm, respectively. « less
; ;
Award ID(s):
1740271 1712752
Publication Date:
Journal Name:
2018 IEEE Nanotechnology Symposium (ANTS), Albany, NY, 2018
Page Range or eLocation-ID:
1 to 5
Sponsoring Org:
National Science Foundation
More Like this
  1. Co electrodeposition was performed onto single crystal Ru(0001) and polycrystalline Ru films to study the influence of such seed layers on the growth of epitaxial Co(0001). The effect of misfit strain on the electrodeposited Co(0001) films was studied using 60 and 10 nm-thick Ru(0001) seed layers, where the misfit strains of the Co layer on the two Ru(0001) seed layers are 7.9% and 9.6%, respectively. Despite a large misfit strain of 7.9%, the planar growth of Co(0001) was achieved up to a thickness of 42 nm before a transition to island growth was observed. Epitaxial Co films electrodeposited onto 10 nm Ru(0001) showed increased roughness when compared with Co electrodeposited onto the 60 nm seed layer. Co electrodeposition onto polycrystalline Ru resulted in a rough, polycrystalline film with faceted growth. Electrochemical experiments and simulations were used to study the influence of [Co2+] and solution pH on the throughput of the electrodeposition process. By increasing [Co2+] from 1 to 20 mM, the deposition rate of Co(0001) increased from 0.23 nm min−1to 0.88 nm min−1at an applied current density of −80μA cm−2.

  2. BAlN films were grown by flow-rate modulation epitaxy on AlN. Figure 1 shows x-ray diffraction (XRD) peaks of 3-µm AlN/(0001) sapphire template layer and 45-nm BAlN layer at 2θ angles of 36.146o and 36.481o, corresponding to c-lattice constants of 4.966 and 4.922Å, respectively. The BAlN XRD peak is very clear and distinct given the small thickness, indicating good wurtzite crystallinity. It is not possible to directly calculate the B content from XRD alone because of uncertainty of the lattice parameters and strain. However, based on the angular separation of the XRD peaks and c-lattice constant difference, the B content is estimated to be ~7% [ ], which is considerably higher than those of high-quality wurtzite BAlN layers reported before [ , , ]. To obtain the accurate B content, Rutherford backscattering spectrometry (RBS) measurements are being made. Figures 2(a)-(b) show a high-resolution cross-sectional transmission electron microscopy (TEM) image with a magnification of 150 kx taken at a-zone axis ([11-20] projection) and diffraction pattern after fast-Fourier transform (FFT). A sharp interface between the AlN and BAlN layers is observed. In addition, the BAlN film exhibits a highly ordered lattice throughout the entire 45nm thickness without the polycrystalline columnar structures found inmore »previous reports [1, ]. The FFT image confirms a wurtzite structure oriented along c-axis. Figure 3 shows a 5×5 µm2 atomic force microscopy (AFM) image of BAlN layer surface. The root-mean-square (RMS) surface roughness is ~1.7nm. Surface macro-steps were found on the surface due to longer diffusion length of group-III atoms than the expected step terrace width. This indicates there is potential to lower the growth temperature to create smoother surfaces while maintaining crystallinity which has been observed for AlN [ ]. In summary, a high-quality wurtzite BAlN layer with relatively high B content ~7% was demonstrated by MOCVD. Refractive index will be measured to facilitate design of distributed Bragg reflector (DBR) for deep UV vertical-cavity surface-emitting laser (VCSEL).« less
  3. With the advances in nanofabrication technology, horizontally aligned and well-defined nitrogen-doped ultrananocrystalline diamond nanostripes can be fabricated with widths in the order of tens of nanometers. The study of the size-dependent electron transport properties of these nanostructures is crucial to novel electronic and electrochemical applications. In this paper, 100 nm thick n-type ultrananocrystalline diamond thin films were synthesized by microwave plasma-enhanced chemical vapor deposition method with 5% N2 gas in the plasma during the growth process. Then the nanostripes were fabricated using standard electron beam lithography and reactive ion etching techniques. The electrical transport properties of the free-standing single nanostripes of different widths from 75 to 150 nm and lengths from 1 to 128 μm were investigated. The study showed that the electrical resistivity of the n-type ultrananocrystalline diamond nanostripes increased dramatically with the decrease in the nanostripe width. The nanostripe resistivity was nearly doubted when the width was reduced from 150 nm to 75 nm. The size-dependent variability in conductivity could originate from the imposed diffusive scattering of the nanostripe surfaces which had a further compounding effect to reinforce the grain boundary scattering.
  4. Abstract Owing to its superlative carrier mobility and atomic thinness, graphene exhibits great promise for interconnects in future nanoelectronic integrated circuits. Chemical vapor deposition (CVD), the most popular method for wafer-scale growth of graphene, produces monolayers that are polycrystalline, where misoriented grains are separated by extended grain boundaries (GBs). Theoretical models of GB resistivity focused on small sections of an extended GB, assuming it to be a straight line, and predicted a strong dependence of resistivity on misorientation angle. In contrast, measurements produced values in a much narrower range and without a pronounced angle dependence. Here we study electron transport across rough GBs, which are composed of short straight segments connected together into an extended GB. We found that, due to the zig-zag nature of rough GBs, there always exist a few segments that divide the crystallographic angle between two grains symmetrically and provide a highly conductive path for the current to flow across the GBs. The presence of highly conductive segments produces resistivity between 10 2 to 10 4 Ω μ m regardless of misorientation angle. An extended GB with large roughness and small correlation length has small resistivity on the order of 10 3 Ω μ m, evenmore »for highly mismatched asymmetric GBs. The effective slope of the GB, given by the ratio of roughness and lateral correlation length, is an effective universal quantifier for GB resistivity. Our results demonstrate that the probability of finding conductive segments diminishes in short GBs, which could cause a large variation in the resistivity of narrow ribbons etched from polycrystalline graphene. We also uncover spreading resistance due to the current bending in the grains to flow through the conductive segments of the GB and show that it scales linearly with the grain resistance. Our results will be crucial for designing graphene-based interconnects for future integrated circuits.« less
  5. The electron reflection probability r at symmetric twin boundaries Σ3, Σ5, Σ9, and Σ11 is predicted from first principles for the eight most conductive face-centered cubic (fcc) metals. r increases with decreasing interplanar distance of atomic planes parallel to the boundary. This provides the basis for an extrapolation scheme to estimate the reflection probability r r at random grain boundaries, which is relatively small, r r = 0.28–0.39, for Cu, Ag, and Au due to their nearly spherical Fermi surfaces, but approximately two times higher for Al, Ca, Ni, Rh, and Ir with a predicted r r = 0.61–0.72. The metal resistivity in the limit of small randomly oriented grains with fixed average size is expected to be proportional to the materials benchmark quantity ρ o λ × r r /(1 − r r ), where ρ o and λ are the bulk resistivity and bulk electron mean free path, respectively. Cu has the lowest value for this quantity, indicating that all other fcc metals have a higher resistivity in the limit of small randomly oriented grains. Thus, the conductivity benefit of replacement metals for narrow Cu interconnect lines can only be realized if the grains are larger than themore »linewidth or exhibit symmetric orientation relationships where r < r r .« less