skip to main content


Search for: All records

Award ID contains: 1740271

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ru(0001) and Co(0001) films with thickness d ranging from 5 to 300 nm are sputter deposited onto Al2O3(0001) substrates in order to quantify and compare the resistivity size effect. Both metals form epitaxial single crystal layers with their basal planes parallel to the substrate surface and exhibit a root-mean-square roughness < 0.4 nm for Ru and < 0.9 nm for Co. Transport measurements on these layers have negligible resistance contributions from roughness and grain boundary scattering which allows direct quantification of electron surface scattering. The measured resistivity ρ vs d is well described by the classical Fuchs-Sondheimer model, indicating a mean free path for transport within the basal plane of λ = 6.7 ± 0.3 nm for Ru and λ = 19.5 ± 1.0 nm for Co. Bulk Ru is 36% more resistive than Co; in contrast, Ru(0001) layers with d ≤ 25 nm are more conductive than Co(0001) layers, which is attributed to the shorter λ for Ru. The determined λ-values are utilized in combination with the Fuchs-Sondheimer and Mayadas-Shatzkes models to predict and compare the resistance of polycrystalline interconnect lines, assuming a grain boundary reflection coefficient R = 0.4 and accounting for the thinner barrier/adhesion layers available to Ru and Co metallizations. This results in predicted 10 nm half-pitch line resistances for Ru, Co, and Cu of 1.0, 2.2, and 2.1 kΩ/µm, respectively. 
    more » « less