skip to main content


Title: Developing a Model of Disciplinary Literacy Instruction for K-12 Engineering Education: Comparing the Literacy Practices of Electrical and Mechanical Engineers (Fundamental)
Despite efforts to diversify the engineering workforce, the field remains dominated by White, male engineers. Research shows that underrepresented groups, including women and minorities, are less likely to identify and engage with scientific texts and literacy practices. Often, children of minority groups and/or working-class families do not receive the same kinds of exposure to science, technology, engineering, and mathematics (STEM) knowledge and practices as those from majority groups. Consequently, these children are less likely to engage in school subjects that provide pathways to engineering careers. Therefore, to mitigate the lack of diversity in engineering, new approaches able to broadly support engineering literacy are needed. One promising approach is disciplinary literacy instruction (DLI). DLI is a method for teaching students how advanced practitioners in a given field generate, interpret, and evaluate discipline-specific texts. DLI helps teachers provide access to to high quality, discipline-specific content to all students, regardless of race, ethnicity, gender, or socio-economic status, Therefore, DLI has potential to reduce literacy-based barriers that discourage underrepresented students from pursuing engineering careers. While models of DLI have been developed and implemented in history, science, and mathematics, little is known about DLI in engineering. The purpose of this research is to identify the authentic texts, practices, and evaluative frameworks employed by professional engineers to inform a model of DLI in engineering. While critiques of this approach may suggest that a DLI model will reflect the literacy practices of majority engineering groups, (i.e., White male engineers), we argue that a DLI model can directly empower diverse K-16 students to become engineers by instructing them in the normed knowledge and practices of engineering. This paper presents a comparative case study conducted to investigate the literacy practices of electrical and mechanical engineers. We scaffolded our research using situated learning theory and rhetorical genre studies and considered the engineering profession as a community of practice. We generated multiple types of data with four participants (i.e., two electrical and two mechanical engineers). Specifically, we generated qualitative data, including written field notes of engineer observations, interview transcripts, think-aloud protocols, and engineer logs of literacy practices. We used constant comparative analysis (CCA) coding techniques to examine how electrical and mechanical engineers read, wrote, and evaluated texts to identify the frameworks that guide their literacy practices. We then conducted within-group and cross-group constant comparative analyses (CCA) to compare and contrast the literacy practices specific to each sub-discipline Findings suggest that there are two types of engineering literacy practices: those that resonate across both mechanical and electrical engineering disciplines and those that are specific to each discipline. For example, both electrical and mechanical engineers used test procedures to review and assess steps taken to evaluate electrical or mechanical system performance. In contrast, engineers from the two sub-disciplines used different forms of representation when depicting components and arrangements of engineering systems. While practices that are common across sub-disciplines will inform a model of DLI in engineering for K-12 settings, discipline-specific practices can be used to develop and/or improve undergraduate engineering curricula.  more » « less
Award ID(s):
1664228
NSF-PAR ID:
10089475
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite efforts to diversify the science, technology, engineering, and mathematics (STEM) workforce, engineering remains a White, male-dominated profession. Often, women and underrepresented students do not identify with STEM careers and many opt out of STEM pathways prior to entering high school or college. In order to broaden participation in engineering, new methods of engaging and retaining those who are traditionally underrepresented in engineering are needed. This work is based on a promising approach for encouraging and supporting diverse participation in engineering: disciplinary literacy instruction (DLI). Generally, teachers use DLI to provide K-12 students with a framework for interpreting, evaluating, and generating discipline-specific texts. This instruction provides students with an understanding of how experts in the discipline read, engage, and generate texts used to solve problems or communicate information. While models of disciplinary literacy have been developed and disseminated in several humanities and science fields, there is a lack of empirical and theoretical research that examines the use of DLI within the engineering domain. It is thought that DLI can be used to foster diverse student interest in engineering from a young age by removing literacy-based barriers that often discourage underrepresented students from entering and pursuing careers in STEM fields. This work-in-progress paper describes a new study underway to develop and disseminate a model of disciplinary literacy in engineering. During this project, researchers will observe, interview, and collect written artifacts from engineers working across four sub-disciplines of engineering: aerospace/mechanical, biological, civil/environmental, and electrical/computer. Data that will be collected include interview transcripts, observation field notes, engineer logs of literacy practices, and photographs of texts that the engineers read and write. Data will be analyzed using constant comparative analytic (CCA) methods. CCA will be used to generate theoretical codes from the data that will form the basis for a model of disciplinary literacy in engineering. As a primary outcome of this research, the engineering DLI model will promote the use of DLI practices within K-12 engineering instruction in order to assist and encourage diverse, underrepresented students to engage in engineering courses of study and pursue STEM careers. Thus far, the research team has begun collecting and analyzing data from two electrical engineers. This work in progress paper will report on preliminary findings, as well as implications for K-12 classroom instruction. For instance, this study has shed insights on how engineers use texts as part of the process of conducting failure analysis, and the research team has begun to conceptualize how these types of texts might be used with K-12 students to help them conduct failure analyses during design testing. Ultimately, this project will result in a list of grade-appropriate texts, evaluative frameworks, and activities (e.g., failure analysis in testing) that K-12 engineering teachers can use to prepare their diverse students to think, act, read, and write like engineers. 
    more » « less
  2. This study, part of a larger research project focused on disciplinary literacy within engineering (Authors, 2018), is a comparative case study of the literacy practices of two electrical engineers. The goal of this comparative case study was to understand how electrical engineers read, write, and evaluate multi-representational texts in the context of their professional lives. We used the findings from this study to construct a model of disciplinary literacy in electrical engineering, whose purpose is to prepare students for the electrical engineering workforce by teaching them to interpret and produce texts using authentic disciplinary frameworks. This paper examines the literacy practices of two electrical engineers to answer the following research questions: (1) What texts do the electrical engineers read and write? (2) What disciplinary frameworks do they use to read and write different texts? (3) How do engineers use internet searches to locate and evaluate information? (4) What role does argumentation have with respect to their literacy practices? 
    more » « less
  3. null (Ed.)
    In summarizing the state of engineering education in the United States the 1918 Mann Report articulated a vision for engineering as “harmonizing the conflicting demands of technical skill and liberal education” and the engineer “not as a conglomeration of classical scholarship and mechanical skill, but as the creator of machines and the interpreter of their human significance, well qualified to increase the material rewards of human labor and to organize industry for the more intelligent development of men.” While later reports shifted the direction of degree programs, elements of the vision articulated in the Mann report remain defining characteristics of an engineering education. The focus on industry emphasizes current, contingent, and contextualized knowledge while synthesis of technical, organizational, and liberal forms of knowing and doing remains a strong theme in engineering education. Engineering, however, is not the only discipline to address such issues. Management, teaching, and medicine also educate people for practice and must continually engage with a changing world to remain relevant. In this paper it is hypothesized that degree programs in these disciplines confront, with varying degrees of success, a tension between providing the knowledge needed to act and inculcating the ability in students to act spontaneously and in the right way. This paper explores this tension by looking across these disciplines to identify practices that are believed to be effective in giving students the knowledge and abilities needed to act professionally. The general approach that has emerged is having students actively address problems of varying degrees of difficulty and constraint through techniques such a problem-based learning. The broad use of problem-centered techniques in disciplines which deal with “the world as it exists now” is to develop a difficult-to-describe characteristic in students – a pervasive mode of being that allows graduates to address challenges and adapt themselves to new situations as need arises. Because this goal is difficult to articulate or measure, it is often described through analogies such as “T-shaped” engineers or the development of professional or transferable skills. Here it is proposed that this objective is achieved by synthesizing diverse lived experiences, a process which is aided by developing forms of transfer that allows experiences developed in one context to be drawn upon effectively in another. Such experiential transfer is likely different than knowledge transfer across disciplinary domains and may be enhanced by supporting the development of goal-based concepts. Furthermore, although this characteristic is often decomposed into discrete educational outcomes such as teamwork or communication, defining and assessing outcomes necessarily emphasizes skill within a domain rather than synthesis across domains. Thus outcomes-based assessment may be counter-productive to developing sought after characteristics of graduates. 
    more » « less
  4. Engineering judgement has become an increasingly more important skill for engineers as engineering problem solving has grown more complex and reliant on technology. Judging the feasibility of solutions is required to solve 21st century problems, making this an essential 21st century engineering skill. Those tasked with preparing the future engineering workforce should avoid educating students to become rote learners who simply take output at face value without critical analysis. Engineering educators need to instead focus efforts toward developing students with improved engineering judgement, specifically engineering intuition. The project is focused on the following four research questions: 1) What are practicing professional engineers’ perceptions of discipline specific intuition and its use in the workplace? 2) Where does intuition manifest in expert engineer decision-making and problem-solving processes? 3) How does the motivation and identity of practicing professional engineers relate to discipline-specific intuition? 4) What would an instrument designed to validly and reliably measure engineering intuition look like? The idea or notion of engineering intuition is based in literature from nursing (Smith) and management (Simon) and links expert development to intuition (Dreyfus). This literature is used to support the hypothesis that engineering intuition is defined as the ability to: 1) assess whether engineering solutions are reasonable or ridiculous, and 2) predict outcomes and/or options within an engineering scenario. We seek to answer research questions 1-3 using interviews with engineering practitioners at various stages in their careers (early to retired). These interviews will allow us to construct a modified definition of engineering intuition and identify related constructs. These results will be leveraged to subsequently create an instrument to reliably measure intuition. The ultimate goal of this project is to use what is learned via research to create classroom practices that improve students’ ability to develop, recognize, and improve their own engineering intuition. Select References: Dreyfus, Stuart E., and Hubert L. Dreyfus. A five-stage model of the mental activities involved in directed skill acquisition. No. ORC-80-2. California Univ Berkeley Operations Research Center, 1980. Smith, Anita. "Exploring the legitimacy of intuition as a form of nursing knowledge." Nursing Standard (through 2013) 23.40 (2009): 35. Simon, Herbert A. "Making management decisions: The role of intuition and emotion." Academy of Management Perspectives 1.1 (1987): 57-64. 
    more » « less
  5. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less