Despite efforts to diversify the engineering workforce, the field remains dominated by White, male engineers. Research shows that underrepresented groups, including women and minorities, are less likely to identify and engage with scientific texts and literacy practices. Often, children of minority groups and/or working-class families do not receive the same kinds of exposure to science, technology, engineering, and mathematics (STEM) knowledge and practices as those from majority groups. Consequently, these children are less likely to engage in school subjects that provide pathways to engineering careers. Therefore, to mitigate the lack of diversity in engineering, new approaches able to broadly support engineering literacy are needed. One promising approach is disciplinary literacy instruction (DLI). DLI is a method for teaching students how advanced practitioners in a given field generate, interpret, and evaluate discipline-specific texts. DLI helps teachers provide access to to high quality, discipline-specific content to all students, regardless of race, ethnicity, gender, or socio-economic status, Therefore, DLI has potential to reduce literacy-based barriers that discourage underrepresented students from pursuing engineering careers. While models of DLI have been developed and implemented in history, science, and mathematics, little is known about DLI in engineering. The purpose of this research is to identify themore »
Examining the Literacy Practices of Engineers to Develop a Model of Disciplinary Literacy Instruction for K-12 Engineering (Work in Progress)
Despite efforts to diversify the science, technology, engineering, and mathematics (STEM) workforce, engineering remains a White, male-dominated profession. Often, women and underrepresented students do not identify with STEM careers and many opt out of STEM pathways prior to entering high school or college. In order to broaden participation in engineering, new methods of engaging and retaining those who are traditionally underrepresented in engineering are needed.
This work is based on a promising approach for encouraging and supporting diverse participation in engineering: disciplinary literacy instruction (DLI). Generally, teachers use DLI to provide K-12 students with a framework for interpreting, evaluating, and generating discipline-specific texts. This instruction provides students with an understanding of how experts in the discipline read, engage, and generate texts used to solve problems or communicate information. While models of disciplinary literacy have been developed and disseminated in several humanities and science fields, there is a lack of empirical and theoretical research that examines the use of DLI within the engineering domain. It is thought that DLI can be used to foster diverse student interest in engineering from a young age by removing literacy-based barriers that often discourage underrepresented students from entering and pursuing careers in STEM fields.
This work-in-progress more »
- Award ID(s):
- 1664228
- Publication Date:
- NSF-PAR ID:
- 10055435
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study, part of a larger research project focused on disciplinary literacy within engineering (Authors, 2018), is a comparative case study of the literacy practices of two electrical engineers. The goal of this comparative case study was to understand how electrical engineers read, write, and evaluate multi-representational texts in the context of their professional lives. We used the findings from this study to construct a model of disciplinary literacy in electrical engineering, whose purpose is to prepare students for the electrical engineering workforce by teaching them to interpret and produce texts using authentic disciplinary frameworks. This paper examines the literacy practices of two electrical engineers to answer the following research questions: (1) What texts do the electrical engineers read and write? (2) What disciplinary frameworks do they use to read and write different texts? (3) How do engineers use internet searches to locate and evaluate information? (4) What role does argumentation have with respect to their literacy practices?
-
This methods paper describes the application of and insights gained from using aspects of an emerging methodology, agile ethnography, to study engineers working in practice. Research has suggested that there is a misalignment between what is taught in engineering school and the types of work that engineers do in practice [1]. Little is known about the types of engineering work that are conducted in practice [2], [3]. In order to best prepare engineering graduates to meet the demands of the engineering workforce, students should be taught the types of knowledge and problem-solving strategies that are commonly used by practicing engineers. By teaching students the problem-solving strategies that are used by their professional counterparts, the gap between what students are taught in school and what is expected of them in the workplace may be lessened. The purpose of this paper is to describe how agile ethnography [4], [5] was successfully used in our research project to examine workplace literacy practices and habits of mind employed by eight engineers in their workplaces over a period of three years. The overarching purpose of the project was to develop models of disciplinary literacy instruction [6] and habits of mind [7] in engineering, both ofmore »
-
According to the National Science Foundation, 50% of Black engineering students who have received a bachelor’s and master’s degree attended a community college at some point during their academic career. However, while research highlights the importance of supporting underrepresented racial and ethnic minorities (URMs) in STEM disciplines, there is a dearth of literature focusing on URMs in community colleges who pursue engineering and other science/math-based majors. Further, Black undergraduates in community colleges are often homogenized by area of study, with little regard for their specific major/discipline. Similarly, while engineering education research has begun to focus on the population of community college students, less attention has been paid to unpacking the experiences of racial subgroups of community college attendees. The engineering student transfer process has specific aspects related to it being a selective and challenging discipline (e.g., limited enrollment policies, engineering culture shock) that warrants a closer investigation. The purpose of this paper is to examine the experiences of a small population of students who have recently transferred from several community colleges to one four-year engineering school. Specifically, we will present preliminary findings derived from interviews with three Black students who started their academic careers at several community colleges in amore »
-
The United Nation’s Sustainable Development Goals state climate change could irreversibly affect future generations and is one of the most urgent issues facing society. To date, most education research on climate change examines middle and high school students’ knowledge without considering the link between understanding and interest to address such issues in their career. In research on students’ attitudes about sustainability, we found that half of first-year college engineering students, in our nationally representative sample of all college students at 4-year institutions (n = 937), do not believe climate change is caused by humans. This lack of belief in human-caused climate change is a significant problem in engineering education because our results also indicate engineering students who do not believe in human caused climate change are less likely to want to address climate change in their careers. This dismal finding highlights a need for improving student understanding and attitudes toward climate change in order to produce engineers prepared and interested in solving complex global problems in sustainability. To advance understanding about students’ understanding of climate change and their agency to address the issue, we developed the CLIMATE survey to measure senior undergraduate engineering students’ Climate change literacy, engineering identity, careermore »