skip to main content

Title: Examining the Literacy Practices of Electrical Engineers: A Comparative Case Study
This study, part of a larger research project focused on disciplinary literacy within engineering (Authors, 2018), is a comparative case study of the literacy practices of two electrical engineers. The goal of this comparative case study was to understand how electrical engineers read, write, and evaluate multi-representational texts in the context of their professional lives. We used the findings from this study to construct a model of disciplinary literacy in electrical engineering, whose purpose is to prepare students for the electrical engineering workforce by teaching them to interpret and produce texts using authentic disciplinary frameworks. This paper examines the literacy practices of two electrical engineers to answer the following research questions: (1) What texts do the electrical engineers read and write? (2) What disciplinary frameworks do they use to read and write different texts? (3) How do engineers use internet searches to locate and evaluate information? (4) What role does argumentation have with respect to their literacy practices?
Authors:
; ;
Award ID(s):
1664228
Publication Date:
NSF-PAR ID:
10106183
Journal Name:
American Education Research Association (AERA) Annual Meeting
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite efforts to diversify the science, technology, engineering, and mathematics (STEM) workforce, engineering remains a White, male-dominated profession. Often, women and underrepresented students do not identify with STEM careers and many opt out of STEM pathways prior to entering high school or college. In order to broaden participation in engineering, new methods of engaging and retaining those who are traditionally underrepresented in engineering are needed. This work is based on a promising approach for encouraging and supporting diverse participation in engineering: disciplinary literacy instruction (DLI). Generally, teachers use DLI to provide K-12 students with a framework for interpreting, evaluating, and generating discipline-specific texts. This instruction provides students with an understanding of how experts in the discipline read, engage, and generate texts used to solve problems or communicate information. While models of disciplinary literacy have been developed and disseminated in several humanities and science fields, there is a lack of empirical and theoretical research that examines the use of DLI within the engineering domain. It is thought that DLI can be used to foster diverse student interest in engineering from a young age by removing literacy-based barriers that often discourage underrepresented students from entering and pursuing careers in STEM fields. Thismore »work-in-progress paper describes a new study underway to develop and disseminate a model of disciplinary literacy in engineering. During this project, researchers will observe, interview, and collect written artifacts from engineers working across four sub-disciplines of engineering: aerospace/mechanical, biological, civil/environmental, and electrical/computer. Data that will be collected include interview transcripts, observation field notes, engineer logs of literacy practices, and photographs of texts that the engineers read and write. Data will be analyzed using constant comparative analytic (CCA) methods. CCA will be used to generate theoretical codes from the data that will form the basis for a model of disciplinary literacy in engineering. As a primary outcome of this research, the engineering DLI model will promote the use of DLI practices within K-12 engineering instruction in order to assist and encourage diverse, underrepresented students to engage in engineering courses of study and pursue STEM careers. Thus far, the research team has begun collecting and analyzing data from two electrical engineers. This work in progress paper will report on preliminary findings, as well as implications for K-12 classroom instruction. For instance, this study has shed insights on how engineers use texts as part of the process of conducting failure analysis, and the research team has begun to conceptualize how these types of texts might be used with K-12 students to help them conduct failure analyses during design testing. Ultimately, this project will result in a list of grade-appropriate texts, evaluative frameworks, and activities (e.g., failure analysis in testing) that K-12 engineering teachers can use to prepare their diverse students to think, act, read, and write like engineers.« less
  2. Despite efforts to diversify the engineering workforce, the field remains dominated by White, male engineers. Research shows that underrepresented groups, including women and minorities, are less likely to identify and engage with scientific texts and literacy practices. Often, children of minority groups and/or working-class families do not receive the same kinds of exposure to science, technology, engineering, and mathematics (STEM) knowledge and practices as those from majority groups. Consequently, these children are less likely to engage in school subjects that provide pathways to engineering careers. Therefore, to mitigate the lack of diversity in engineering, new approaches able to broadly support engineering literacy are needed. One promising approach is disciplinary literacy instruction (DLI). DLI is a method for teaching students how advanced practitioners in a given field generate, interpret, and evaluate discipline-specific texts. DLI helps teachers provide access to to high quality, discipline-specific content to all students, regardless of race, ethnicity, gender, or socio-economic status, Therefore, DLI has potential to reduce literacy-based barriers that discourage underrepresented students from pursuing engineering careers. While models of DLI have been developed and implemented in history, science, and mathematics, little is known about DLI in engineering. The purpose of this research is to identify themore »authentic texts, practices, and evaluative frameworks employed by professional engineers to inform a model of DLI in engineering. While critiques of this approach may suggest that a DLI model will reflect the literacy practices of majority engineering groups, (i.e., White male engineers), we argue that a DLI model can directly empower diverse K-16 students to become engineers by instructing them in the normed knowledge and practices of engineering. This paper presents a comparative case study conducted to investigate the literacy practices of electrical and mechanical engineers. We scaffolded our research using situated learning theory and rhetorical genre studies and considered the engineering profession as a community of practice. We generated multiple types of data with four participants (i.e., two electrical and two mechanical engineers). Specifically, we generated qualitative data, including written field notes of engineer observations, interview transcripts, think-aloud protocols, and engineer logs of literacy practices. We used constant comparative analysis (CCA) coding techniques to examine how electrical and mechanical engineers read, wrote, and evaluated texts to identify the frameworks that guide their literacy practices. We then conducted within-group and cross-group constant comparative analyses (CCA) to compare and contrast the literacy practices specific to each sub-discipline Findings suggest that there are two types of engineering literacy practices: those that resonate across both mechanical and electrical engineering disciplines and those that are specific to each discipline. For example, both electrical and mechanical engineers used test procedures to review and assess steps taken to evaluate electrical or mechanical system performance. In contrast, engineers from the two sub-disciplines used different forms of representation when depicting components and arrangements of engineering systems. While practices that are common across sub-disciplines will inform a model of DLI in engineering for K-12 settings, discipline-specific practices can be used to develop and/or improve undergraduate engineering curricula.« less
  3. This methods paper describes the application of and insights gained from using aspects of an emerging methodology, agile ethnography, to study engineers working in practice. Research has suggested that there is a misalignment between what is taught in engineering school and the types of work that engineers do in practice [1]. Little is known about the types of engineering work that are conducted in practice [2], [3]. In order to best prepare engineering graduates to meet the demands of the engineering workforce, students should be taught the types of knowledge and problem-solving strategies that are commonly used by practicing engineers. By teaching students the problem-solving strategies that are used by their professional counterparts, the gap between what students are taught in school and what is expected of them in the workplace may be lessened. The purpose of this paper is to describe how agile ethnography [4], [5] was successfully used in our research project to examine workplace literacy practices and habits of mind employed by eight engineers in their workplaces over a period of three years. The overarching purpose of the project was to develop models of disciplinary literacy instruction [6] and habits of mind [7] in engineering, both ofmore »which are potential methods for teaching students the knowledge, skills, and strategies that may prepare them for an engineering career. Disciplinary literacy instruction teaches students the ways that practitioners use literacy practices when reading, writing, interpreting, and evaluating discipline-specific information [8]. Habits of mind are the intelligent behaviors that guide how professionals respond when faced with situations of uncertainty [9]. By understanding how engineers use disciplinary literacy practices and habits of mind in the workplace, models for student instruction can be developed. These instructional practices can be used to support students’ use of authentic engineering practices and ways of thinking that will support them in the classroom and in their future workplaces. Findings about the disciplinary practices and habits of mind of the eight engineers are presented in previous publications by the authors (e.g., [10]–[12]).« less
  4. As concerns about the preparation of engineers grow, so has interest in the dimensions of engineering identity. By having a thorough understanding of engineering identity, departments will be better able to produce engineers who understand their role as a member of the profession. Generally, engineering identity literature has not focused on specific disciplinary identities, instead looking at engineering as a whole. Previous literature has utilized role identity theory (e.g., Gee, 2001) and identified key dimensions of engineering identity, including one’s performance/competence and interest in engineering courses and recognition as a current/future engineer (Godwin, 2016; Godwin et al., 2013; Godwin et al., 2016). This paper deepens our understanding of electrical and computer engineering identities. As part of research activities associated with National Science Foundation grant looking at professional formation of socio-technically minded students, we analyzed texts and documents from an electrical and computer engineering department to examine the department’s professed priorities. Using document analysis, we answered this research question: How is a department’s commitment to undergraduate engineering identity development expressed in departmental documents? Document analysis focuses on texts to describe some aspect of the social world (Bowen, 2009). This analysis was performed with two types of departmental documents: front-facing documents (e.g.,more »websites, newsletters) and internal documents (e.g., ABET self-studies, program evaluations) from an electrical and computing engineering department at a public research university. Analysis employed a priori and emergent coding schemas to formulate themes related to identity, performance/capability, interest, and recognition present in departmental documents (Bowen, 2009; Godwin, 2016). Specifically, we skimmed documents to ascertain inclusion status; read and coded documents in depth; and identified broader themes across documents (Bowen, 2009). One broad theme was a lack of attention to identity; another showed emphasis on technical skills/competencies. By interrogating absences, we found that there is little attention being paid to identity development or its components in these documents. In other words, these texts do not indicate that the department is invested in supporting students’ senses of interest, performance, and recognition as electrical and computer engineers. Rather, we found that these texts emphasize the acquisition of specific concepts, skills, and competencies. Overall, analysis indicated that the department does not cultivate holistic engineering student identities. The resultant implications are by no means irrelevant—a focus on identity over specific skills could increase retention, increase student satisfaction, and produce better future engineers.« less
  5. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to whichmore »they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering.« less