skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A constrained cylinder model of strain transfer for packaged fiber Bragg grating sensors embedded in inelastic medium
In this study, the strain transfer rate from an axially loaded, inelastic concrete tube to a glass fiber reinforced polymer (GFRP) packaged optical fiber with Bragg gratings is derived when the radial deformation of an “equivalent elastic” concrete tube is constrained by the packaged fiber. The concrete strains, both undisturbed and disturbed by the presence of the fiber Bragg gratings sensor, are analytically evaluated, and their difference (up to over 30%) is related to the development length at two free ends of the GFRP package. The mechanism of strain transfer is dominated by a ratio of average fiber and concrete strains in elastic range and by the averaging effect and a ratio of disturbed and undisturbed concrete strains in inelastic range. The analytical strain transfer rate was significantly reduced from 0.95, when concrete behaved elastically, to less than 0.4, when concrete damaged severely. This result was experimentally validated with less than 10% difference prior to concrete fracture. The validated model is applicable to fiber optic sensors that are embedded into concrete structures by a concrete cover of at least 10 times of the radius of the optic fiber.  more » « less
Award ID(s):
1750316
PAR ID:
10089615
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Structural Control and Health Monitoring
ISSN:
1545-2255
Page Range / eLocation ID:
e2335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Weight data of vehicles play an important role in traffic planning, weight enforcement, and pavement condition assessment. In this paper, a weigh-in-motion (WIM) system that functions at both low-speeds and high-speeds in flexible pavements is developed based on in-pavement, three-dimensional glass-fiber-reinforced, polymer-packaged fiber Bragg grating sensors (3D GFRP-FBG). Vehicles passing over the pavement produce strains that the system monitors by measuring the center wavelength changes of the embedded 3D GFRP-FBG sensors. The FBG sensor can estimate the weight of vehicles because of the direct relationship between the loading on the pavement and the strain inside the pavement. A sensitivity study shows that the developed sensor is very sensitive to sensor installation depth, pavement property, and load location. Testing in the field validated that the longitudinal component of the sensor if not corrected by location has a measurement accuracy of 86.3% and 89.5% at 5 mph and 45 mph vehicle speed, respectively. However, the system also has the capability to estimate the location of the loading position, which can enhance the system accuracy to more than 94.5%. 
    more » « less
  2. This study presents an experimental investigation on the combined effect of mechanical loads and corrosion using the designed polytetrafluoroethylene tube-packaged fiber Bragg grating (FBG) sensors, as to implement long-gauge FBG (LFBG) sensors in corrosion detection practices for structural health monitoring. A simplified LFBG-based sensing model was proposed for strain measurement in terms of the Bragg wavelength change. Correspondingly, a systematic corrosion assessment strategy was developed to estimate corrosion severity and average corrosion rate. Upon this, the experimental study was performed on epoxy-coated steel specimens embedded with LFBG sensors, where the loading, corrosion, and combined loading–corrosion tests were used to explore the effect of mechanical loads on corrosion behavior. Test results revealed that the specimens subjected to combined conditions exhibited more severe corrosion damage. The maximum mass loss was observed to be 1.82 and 2.43 in percentage under individual corrosion and combined loading–corrosion conditions, respectively. Also, the pit depth under combined conditions was found to develop rapidly in the early stage. The pit depth severity ratio was around 0.2–0.8 during the 67 days of exposure, indicating an evident impact of loading on corrosion severity. Furthermore, the maximum average corrosion rate under combined conditions was found to be 5.66 times that under individual corrosion conditions. 
    more » « less
  3. Fiber reinforced polymer (FRP) waste is becoming an environmental concern due to the widespread use and non-biodegradable nature of FRP composites. Cutting FRP waste into discrete reinforce-ments (referred to as “needles” hereafter) as coarse aggregate in concrete has been suggested as a possible solution to FRP waste recycling. It has previously been observed in small specimens that FRP needles increase the tensile strength and energy absorption capacity of concrete. This paper presents an experimental investiga-tion into the effect of GFRP needles as coarse aggregate partial replacement in concrete on shear behavior of full-scale reinforced concrete (RC) beams. A total of 10 RC beams without steel stirrups in the critical zone were tested under four-point bending. The volume replacement ratio of the coarse aggregate and the surface type of GFRP needles were chosen as the test parameters. GFRP needles, with either smooth or helically wrapped surfaces, were added to the concrete mix to replace 5% or 10% of coarse aggregate by volume, respectively. All test beams failed in shear in a brittle manner with the ductility being slightly enhanced by the partial replace-ment of coarse aggregate using GFRP needles. An enhancement of 8%-10% in the load carrying capacity was observed in beams with helically wrapped needles, while beams with smooth needles showed a reduction in the load carrying capacity. 
    more » « less
  4. Abstract The current code provisions in ACI 440.11 are based on the flexural theory that applies to slender members and may not represent the actual structural behavior when the shear span-to-reinforcement depth ratio is less than 2.5 (i.e., deep members). The Strut-and-tie method (STM) can be a better approach to design deep members; however, this chapter is not included in the code. Research has shown that STM models used for steel-reinforced concrete (RC) give satisfactory results when applied to glass fiber-reinforced polymer-reinforced (GFRP)-RC members with a/d less than 2.5. Therefore, this study is carried out to provide insights into the use of STM for GFRP-RC deep members based on the available literature and to highlight the necessity for the inclusion of a new chapter addressing the use of STM in the ACI 440.11 Code. It includes a design example to show the implications of ACI 440.11 code provisions when applied to GFRP-RC deep members (i.e., isolated footings) and compares it when designed as per STM provided in ACI 318-19. It was observed that current code provisions in ACI 440.11 required more concrete thickness (i.e.,h = 1.12 m) leading to implementation challenges. However, the required dimensions decreased (i.e.,h = 0.91 m) when the design was carried out as per STM. Due to the novelty of GFRP reinforcement, current code provisions may limit its extensive use in RC buildings, particularly in footings given the water table issues and excavation costs. Therefore, it is necessary to adopt innovative methods such as STM to design GFRP-RC deep members if allowed by the code. 
    more » « less
  5. Recycling glass fiber reinforced polymer (GFRP) composite materials has been proven to be challenging due to their high mechanical performance and high resistance to harsh chemical and thermal conditions. This work discusses the efforts made in the past to mechanically process GFRP waste materials by cutting them into large-sized (cm scale) pieces, as opposed to pulverization, for use in concrete mixtures. These pieces can be classified into two main categories—coarse aggregate and discrete reinforcement, here referred to as “needles.” The results from all the studies show that using GFRP coarse aggregate leads to significant reductions in the compressive strength and tensile strength of concrete. However, GFRP needles lead to sizable increases in the energy absorption capacity of concrete. In addition, if the glass fibers are longitudinally aligned within the needles, these elements can substantially increase the tensile strength of concrete. Processing GFRP waste into needles requires less energy and time than that for producing GFRP coarse aggregate. Also, compared to pulverized GFRP waste, which consists of broken and separate particles of glass and resin that at best can be used as low-quality fillers, GFRP needles are high strength composite elements 
    more » « less