Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of Hz to several kHz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz, while in the Livingston detector, the noise reduction was a factor of 1.9 (5.8dB). These improvements directly impact LIGO’s scientific output for high-frequency sources (e.g., binary neutron star post-merger physics). The improved low-frequency sensitivity, which boosted the detector range by 15–18 % with respect to no squeezing, corresponds to an increase in astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter long filter cavity to each detector as part of the LIGO A+ upgrade.
more »
« less
A Study of Gravitational Wave Memory and Its Detectability With LIGO Using Bayesian Inference
The detectable component of gravitational waves, known as the oscillatory waveform, is predicted to have a smaller, lower frequency counterpart called the memory: a permanent warping of space-time. The memory component is low-frequency (below the usual LIGO frequency band starting at 20 Hz), and low amplitude. Low frequency noise sources on earth make it difficult for ground based detectors to reach the SNR (signal to noise ratio) needed to detect this component. We use Bayesian parameter estimation on simulated events with future detector sensitivities, to determine the detector noise spectrum, event masses, and detected SNR required to detect gravitational wave memory.
more »
« less
- Award ID(s):
- 1757303
- PAR ID:
- 10089816
- Date Published:
- Journal Name:
- LIGO Laboratory Summer 2018 Undergraduate Research
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The sensitivity of aLIGO detectors is adversely affected by the presence of noise caused by light scattering. Low frequency seismic disturbances can create higher frequency scattering noise adversely impacting the frequency band in which we detect gravitational waves. In this paper, we analyze instances of a type of scattered light noise we call ‘Fast Scatter’ that is produced by motion at frequencies greater than 1 Hz, to locate surfaces in the detector that may be responsible for the noise. We model the phase noise to better understand the relationship between increases in seismic noise near the site and the resulting Fast Scatter observed. We find that mechanical damping of the arm cavity baffles led to a significant reduction of this noise in recent data. For a similar degree of seismic motion in the 1–3 Hz range, the rate of noise transients is reduced by a factor of ~50.more » « less
-
null (Ed.)Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo's third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector.more » « less
-
Abstract As pulsar timing arrays (PTAs) transition into the detection era of the stochastic gravitational wave background (GWB), it is important for PTA collaborations to review and possibly revise their observing campaigns. The detection of a “single source” would be a boon for gravitational astrophysics, as such a source would emit gravitational waves for millions of years in the PTA frequency band. Here we present generic methods for studying the effects of various observational strategies, taking advantage of detector sensitivity curves, i.e., noise-averaged, frequency-domain detection statistics. The statistical basis for these methods is presented along with myriad examples of how to tune a detector towards single, deterministic signals or a stochastic background. We demonstrate that trading observations of the worst pulsars for high cadence campaigns on the best pulsars increases sensitivity to single sources at high frequencies while hedging losses in GWB and single source sensitivity at low frequencies. We also find that sky-targeted observing campaigns yield minimal sensitivity improvements compared with other PTA tuning options. Lastly, we show the importance of the uncorrelated half of the GWB, i.e. the pulsar-term, as an increasingly prominent sources of noise and show the impact of this emerging noise source on various PTA configurations.more » « less
-
Wyld, David C; Nagamalai, Dhinaharan (Ed.)The proliferation of 5G technologies and the vast deployment of Internet of Things (IoT) devices have heightened the demand for optimal spectrum utilization, necessitating robust spectrum management strategies. In this context, an efficient energy detector employing wideband spectrum sensing within a 5G environment is essential for identifying underutilized frequency bands suitable for cognitive radio applications across multiple subbands. While cooperative spectrum sensing (CSS) can enhance the detection capabilities of energy detectors amidst noise uncertainty, its performance often deteriorates under low signal-to-noise ratio (SNR) conditions. This study proposes an improved CSS framework that combines Maximal Ratio Combining (MRC) with the K-out-of-N fusion rule to address noise uncertainty in a complex Gaussian environment across multiple sub-bands in cooperative wideband spectrum sensing. Comparative performance analysis confirms that this integrated approach enhances detection probability and maintains a low false alarm rate across various low SNR scenarios, significantly outperforming traditional cooperative and non-cooperative wideband spectrum sensing methods. These results highlight the potential for advancing cognitive radio technologies by optimizing detection algorithms to improve performance under challenging conditions.more » « less
An official website of the United States government

