Reducing scattered light in LIGO's third observing run
Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo's third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector.
- Publication Date:
- NSF-PAR ID:
- 10283018
- Journal Name:
- Classical and quantum gravity
- Volume:
- 38
- Page Range or eLocation-ID:
- 025016
- ISSN:
- 1361-6382
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Radio pulsar signals are significantly perturbed by their propagation through the ionized interstellar medium. In addition to the frequency-dependent pulse times of arrival due to dispersion, pulse shapes are also distorted and shifted, having been scattered by the inhomogeneous interstellar plasma, affecting pulse arrival times. Understanding the degree to which scattering affects pulsar timing is important for gravitational-wave detection with pulsar timing arrays (PTAs), which depend on the reliability of pulsars as stable clocks with an uncertainty of ∼100 ns or less over ∼10 yr or more. Scattering can be described as a convolution of the intrinsic pulse shapemore »
-
We determine the ability of Cosmic Explorer, a proposed third-generation gravitational-wave observatory, to detect eccentric binary neutron stars and to measure their eccentricity. We find that for a matched-filter search, template banks constructed using binaries in quasicircular orbits are effectual for eccentric neutron star binaries with e<0.004 (e<0.003)is the binary’s eccentricity at a gravitational-wave frequency of 7 Hz. We show that stochastic template placement can be used to construct a matched-filter search for binaries with larger eccentricities and construct an effectual template bank for binaries with e<0.05. We show that the computational cost of both the search for binaries inmore »
-
ABSTRACT Two binary neutron star mergers, GW170817 and GW190425, have been detected by Advanced LIGO and Virgo. These signals were detected by matched-filter searches that assume that the star’s orbit has circularized by the time their gravitational-wave emission is observable. This suggests that their eccentricity is low, but full parameter estimation of their eccentricity has not yet been performed. We use gravitational-wave observations to measure the eccentricity of GW170817 and GW190425. We find that the eccentricity at a gravitational-wave frequency of 10 Hz is e ≤ 0.024 and e ≤ 0.048 for GW170817 and GW190425, respectively (90 per cent confidence). This is consistentmore »
-
Abstract Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability inmore »
-
This paper provides indoor reflection, scattering, transmission, and large-scale path loss measurements and models, which describe the main propagation mechanisms at millimeter wave and Terahertz frequencies. Channel properties for common building materials (drywall and clear glass) are carefully studied at 28, 73, and 140 GHz using a wideband sliding correlation based channel sounder system with rotatable narrow-beam horn antennas. Reflection coefficient is shown to linearly increase as the incident angle increases, and lower reflection loss (e.g., stronger reflections) are observed as frequencies increase for a given incident angle. Although backscatter from drywall is present at 28, 73, and 140 GHz,more »