skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving earthquake monitoring for gravitational-wave detectors with historical seismic data
The LIGO detectors are susceptible to high magnitude teleseismic events such as earthquakes, which can disrupt proper functioning, operation and significantly reduce their duty cycle. With advanced warning of impeding tremors, the impact can be suppressed in the isolation system and the down time can be reduced at the expense of increased instrumental noise. An earthquake early- warning system has been developed relying on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). The alerts can be used to estimate arrival times and ground velocities at the gravitational-wave detectors. We use machine learning algorithms to develop a prediction model and control strategy has to reduce LIGO downtime.  more » « less
Award ID(s):
1757303
PAR ID:
10089817
Author(s) / Creator(s):
;
Date Published:
Journal Name:
LIGO Laboratory Summer 2018 Undergraduate Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The neutrino signal from the next galactic core-collapse supernova will provide an invaluable early warning of the explosion. By combining the burst trigger from several neutrino detectors, the location of the explosion can be triangulated minutes to hours before the optical emission becomes visible, while also reducing the rate of false-positive triggers. To enable multi-messenger follow-up of nearby supernovae, the SuperNova Early Warning System 2.0 (SNEWS 2.0) will produce a combined alert using a global network of neutrino detectors. This paper describes the trigger publishing and alert formation framework of the SNEWS 2.0 network. The framework is built on the HOPSKOTCH publish-subscribe system to easily incorporate new detectors into the network, and it implements a coincidence system to form alerts and estimate a false-positive rate for the combined triggers. The paper outlines the structure of the SNEWS 2.0 software and the initial testing of coincident signals. 
    more » « less
  2. null (Ed.)
    The purpose of alerts and warnings is to provide necessary information to the public that will lead to their safety in emergencies. The nation’s alerting capabilities need to evolve and progress with the extensive use of smartphones, and newer technologies become available, especially to be more precisely targeted to sub-populations at risk. Historically, this has been a challenge as the delivery of alerts and warning messages to the public is primarily through broadcast media and signs. However, deploying such signs takes time and may not be visible to people imminent of natural hazards. Especially for road closing, marking hazards, emergency evacuation, etc., it would be beneficial to have an easy-to-deploy and automated alert/warning system that requires no line of sight. To this end, we have developed Insight – a Bluetooth beacon-based system that uses a smartphone application to sense signals from beacons marking hazard zones. The system does not require any Internet or communication infrastructure and therefore, it is resilient to breakdowns in communications during disasters. To demonstrate the feasibility of Insight, we conducted a study in an urban university campus location. The system demonstrated adequate usability and feasibility. 
    more » « less
  3. null (Ed.)
    Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo's third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector. 
    more » « less
  4. Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises. 
    more » « less
  5. Abstract We introduce a new capability of the Neil Gehrels Swift Observatory, dubbed “continuous commanding,” that achieves 10 s latency response time on orbit to unscheduled target-of-opportunity requests received on the ground. We show that this will allow Swift to respond to premerger (early-warning) gravitational-wave (GW) detections, rapidly slewing the Burst Alert Telescope (BAT) across the sky to place the GW origin in the BAT field of view at or before merger time. This will dramatically increase the GW/gamma-ray burst (GRB) codetection rate and enable prompt arcminute localization of a neutron star merger. We simulate the full Swift response to a GW early-warning alert, including input sky maps produced at different early-warning times, a complete model of the Swift attitude control system, and a full accounting of the latency between the GW detectors and the spacecraft. 60 s of early warning can double the rate of a prompt GRB detection with arcminute localization, and 140 s guarantees observation anywhere on the unocculted sky, even with localization areas ≫1000 deg2. While 140 s is beyond current GW detector sensitivities, 30–70 s is achievable today. We show that the detection yield is now limited by the latency of LIGO/Virgo cyberinfrastructure and motivate a focus on its reduction. Continuous commanding has been integrated as a general capability of Swift, significantly increasing its versatility in response to the growing demands of time-domain astrophysics. We demonstrate this potential on an externally triggered fast radio burst (FRB), slewing 81° across the sky, and collecting X-ray and UV photons from the source position <150 s after the trigger was received from the Canadian Hydrogen Intensity Mapping Experiment, thereby setting the earliest and deepest such constraints on high-energy activity from nonrepeating FRBs. The Swift Team invites the community to consider and propose novel scientific applications of ultra-low-latency UV, X-ray, and gamma-ray observations. 
    more » « less