Abstract The discovery of a polarimetric radar signature indicative of hydrometeor refreezing has shown promise in its utility to identify periods of ice pellet production. Uniquely characterized well below the melting layer by locally enhanced values of differential reflectivity ( Z DR ) within a layer of decreasing radar reflectivity factor at horizontal polarization ( Z H ), the signature has been documented in cases where hydrometeors were completely melted prior to refreezing. However, polarimetric radar features associated with the refreezing of partially melted hydrometeors have not been examined as rigorously in either an observational or microphysical modeling framework. Here, polarimetric radar data—including vertically pointing Doppler spectral data from the Ka-band Scanning Polarimetric Radar (KASPR)—are analyzed for an ice pellets and rain mixture event where the ice pellets formed via the refreezing of partially melted hydrometeors. Observations show that no such distinct localized Z DR enhancement is present, and that values instead decrease directly beneath enhanced values associated with melting. A simplified, explicit bin microphysical model is then developed to simulate the refreezing of partially melted hydrometeors, and coupled to a polarimetric radar forward operator to examine the impacts of such refreezing on simulated radar variables. Simulated vertical profiles of polarimetric radar variables and Doppler spectra have similar features to observations, and confirm that a Z DR enhancement is not produced. This suggests the possibility of two distinct polarimetric features of hydrometeor refreezing: ones associated with refreezing of completely melted hydrometeors, and those associated with refreezing of partially melted hydrometeors. Significance Statement There exist two pathways for the formation of ice pellets: refreezing of fully melted hydrometeors, and refreezing of partially melted hydrometeors. A polarimetric radar signature indicative of fully melted hydrometeor refreezing has been extensively documented in the past, yet no study has documented the refreezing of partially melted hydrometeors. Here, observations and idealized modeling simulations are presented to show different polarimetric radar features associated with partially melted hydrometeor refreezing. The distinction in polarimetric features may be beneficial to identifying layers of supercooled liquid drops within transitional winter storms.
more »
« less
Application of Spectral Polarimetry to a Hailstorm at Low Elevation Angle
Spectral polarimetry has the potential to be used to study microphysical properties in relation to the dynamics within a radar resolution volume by combining Doppler and polarimetric measurements. The past studies of spectral polarimetry have focused on using radar measurements from higher elevation angles, where both the size sorting from the hydrometeors’ terminal velocities and polarimetric characteristics are maintained. In this work, spectral polarimetry is applied to data from the 0° elevation angle, where polarimetric properties are maximized. Radar data collected by the C-band University of Oklahoma Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) during a hailstorm event on 24 April 2011 are used in the analysis. The slope of the spectral differential reflectivity exhibits interesting variations across the hail core, which suggests the presence of size sorting of hydrometeors caused by vertical shear in a turbulent environment. A nearby S-band polarimetric Weather Surveillance Radar-1988 Doppler (KOUN) is also used to provide insights into this hailstorm. Moreover, a flexible numerical simulation is developed for this study, in which different types of hydrometeors such as rain and melting hail can be considered individually or as a combination under different sheared and turbulent conditions. The impacts of particle size distribution, shear, turbulence, attenuation, and mixture of rain and melting hail on polarimetric spectral signatures are investigated with the simulated Doppler spectra and spectral differential reflectivity.
more »
« less
- Award ID(s):
- 1661679
- PAR ID:
- 10090567
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 36
- Issue:
- 4
- ISSN:
- 0739-0572
- Page Range / eLocation ID:
- p. 567-583
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere.more » « less
-
In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere.more » « less
-
Hail-bearing storms produce substantial socioeconomic impacts each year, yet challenges remain in forecasting the type of hail threat supported by a given environment and in using radar to estimate hail sizes more accurately. One class of hail threat is storms producing large accumulations of small hail (SPLASH). This paper presents an analysis of the environments and polarimetric radar characteristics of such storms. Thirteen SPLASH events were selected to encompass a broad range of geographic regions and times of year. Rapid Refresh model output was used to characterize the mesoscale environments associated with each case. This analysis reveals that a range of environments can support SPLASH cases; however, some commonalities included large precipitable water (exceeding that day’s climatological 90th-percentile values), CAPE < 2500 J kg−1, weak storm-relative wind speeds (<10 m s−1) in the lowest few kilometers of the troposphere, and a weak component of the storm-relative flow orthogonal to the 0–6-km shear vector. Most of the storms were weak supercells that featured distinctive S-band radar signatures, including compact (<200 km2) regions of reflectivity factor > 60 dB Z, significant differential attenuation evident as negative differential reflectivity extending downrange of the hail core, and anomalously large specific differential phase KDP. The KDPvalues often approached or exceeded the operational color scale’s upper limit (10.7° km−1); reprocessing the level-II data revealed KDP>17° km−1, the highest documented in precipitation at S band. Electromagnetic scattering calculations using the T-matrix method confirm that large quantities of small melting hail mixed with heavy rain can plausibly explain the observed radar signatures.more » « less
-
Abstract Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data from few storms and in isolation from other radar metrics. This study leverages a 10-yr record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail–producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing midaltitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and copolar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.more » « less
An official website of the United States government
