skip to main content


Title: Iris Presentation Attack via Textured Contact Lens in Unconstrained Environment
The widespread use of smartphones has spurred the research in mobile iris devices. Due to their convenience, these mobile devices are also utilized in unconstrained outdoor scenarios. This has necessitated the development of reliable iris recognition algorithms for such uncontrolled environment. At the same time, iris presentation attacks pose a major challenge to current iris recognition systems. It has been shown that print attacks and textured contact lens may significantly degrade the iris recognition performance. Motivated by these factors, we present a novel Mobile Uncontrolled Iris Presentation Attack Database (MUIPAD). The database contains more than 10,000 iris images that are acquired with and without textured contact lenses in indoor and outdoor environments using a mobile sensor. We also investigate the efficacy of textured contact lens in identity impersonation and obfuscation. Moreover, we demonstrate the effectiveness of deep learning based features for iris presentation attack detection on the proposed database.  more » « less
Award ID(s):
1650474
NSF-PAR ID:
10091239
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Winter Conference on Applications of Computer Vision (WACV)
Page Range / eLocation ID:
503 to 511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Iris recognition in visible spectrum has developed into an active area of research. This has elevated the importance of efficient presentation attack detection algorithms, particularly in security based critical applications. In this paper, we present the first detailed analysis of the effect of contact lenses on iris recognition in visible spectrum. We introduce the first contact lens database in visible spectrum, Unconstrained Visible Contact Lens Iris (UVCLI) Database, containing samples from 70 classes with subjects wearing textured contact lenses in indoor and outdoor environments across multiple sessions. We observe that textured contact lenses degrade the visible spectrum iris recognition performance by over 25% and thus, may be utilized intentionally or unintentionally to attack existing iris recognition systems. Next, three iris presentation attack detection (PAD) algorithms are evaluated on the proposed database and highest PAD accuracy of 82.85% is observed. This illustrates that there is a significant scope of improvement in developing efficient PAD algorithms for detection of textured contact lenses in unconstrained visible spectrum iris images. 
    more » « less
  2. Reliability and accuracy of iris biometric modality has prompted its large-scale deployment for critical applications such as border control and national ID projects. The extensive growth of iris recognition systems has raised apprehensions about susceptibility of these systems to various attacks. In the past, researchers have examined the impact of various iris presentation attacks such as textured contact lenses and print attacks. In this research, we present a novel presentation attack using deep learning based synthetic iris generation. Utilizing the generative capability of deep convolutional generative adversarial networks and iris quality metrics, we propose a new framework, named as iDCGAN (iris deep convolutional generative adversarial network) for generating realistic appearing synthetic iris images. We demonstrate the effect of these synthetically generated iris images as presentation attack on iris recognition by using a commercial system. The state-of-the-art presentation attack detection framework, DESIST is utilized to analyze if it can discriminate these synthetically generated iris images from real images. The experimental results illustrate that mitigating the proposed synthetic presentation attack is of paramount importance. 
    more » « less
  3. Presentation attacks such as using a contact lens with a printed pattern or printouts of an iris can be utilized to bypass a biometric security system. The first international iris liveness competition was launched in 2013 in order to assess the performance of presentation attack detection (PAD) algorithms, with a second competition in 2015. This paper presents results of the third competition, LivDet-Iris 2017. Three software-based approaches to Presentation Attack Detection were submitted. Four datasets of live and spoof images were tested with an additional cross-sensor test. New datasets and novel situations of data have resulted in this competition being of a higher difficulty than previous competitions. Anonymous received the best results with a rate of rejected live samples of 3.36% and rate of accepted spoof samples of 14.71%. The results show that even with advances, printed iris attacks as well as patterned contacts lenses are still difficult for software-based systems to detect. Printed iris images were easier to be differentiated from live images in comparison to patterned contact lenses as was also seen in previous competitions. 
    more » « less
  4. Face recognition systems are susceptible to presentation attacks such as printed photo attacks, replay attacks, and 3D mask attacks. These attacks, primarily studied in visible spectrum, aim to obfuscate or impersonate a person’s identity. This paper presents a unique multispectral video face database for face presentation attack using latex and paper masks. The proposed Multispectral Latex Mask based Video Face Presentation Attack (MLFP) database contains 1350 videos in visible, near infrared, and thermal spectrums. Since the database consists of videos of subjects without any mask as well as wearing ten different masks, the effect of identity concealment is analyzed in each spectrum using face recognition algorithms. We also present the performance of existing presentation attack detection algorithms on the proposed MLFP database. It is observed that the thermal imaging spectrum is most effective in detecting face presentation attacks. 
    more » « less
  5. IEEE/IFIP (Ed.)
    We investigate the feasibility of targeted privacy attacks using only information available in physical channels of LTE mobile networks and propose three privacy attacks to demonstrate this feasibility: mobile-app fingerprinting attack, history attack, and correlation attack. These attacks can reveal the geolocation of targeted mobile devices, the victim's app usage patterns, and even the relationship between two users within the same LTE network cell. An attacker also may launch these attacks stealthily by capturing radio signals transmitted over the air, using only a passive sniffer as equipment. To ensure the impact of these attacks on mobile users' privacy, we perform evaluations in both laboratory and real-world settings, demonstrating their practicality and dependability. Furthermore, we argue that these attacks can target not only 4G/LTE but also the evolving 5G standards. 
    more » « less