skip to main content


Title: Late Deep Fusion of Color Spaces to Enhance Finger Photo Presentation Attack Detection in Smartphones
Finger photo recognition represents a promising touchless technology that offers portable and hygienic authentication solutions in smartphones, eliminating physical contact. Public spaces, such as banks and staff-less stores, benefit from contactless authentication considering the current public health sphere. The user captures the image of their own finger by using the camera integrated in a mobile device. Although recent research has pushed boundaries of finger photo matching, the security of this biometric methodology still represents a concern. Existing systems have been proven to be vulnerable to print attacks by presenting a color paper-printout in front of the camera and photo attacks that consist of displaying the original image in front of the capturing device. This paper aims to improve the performance of finger photo presentation attack detection (PAD) algorithms by investigating deep fusion strategies to combine deep representations obtained from different color spaces. In this work, spoofness is described by combining different color models. The proposed framework integrates multiple convolutional neural networks (CNNs), each trained using patches extracted from a specific color model and centered around minutiae points. Experiments were carried out on a publicly available database of spoofed finger photos obtained from the IIITD Smartphone Finger photo Database with spoof data, including printouts and various display attacks. The results show that deep fusion of the best color models improved the robustness of the PAD system and competed with the state-of-the-art.  more » « less
Award ID(s):
1822094
NSF-PAR ID:
10419402
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
22
ISSN:
2076-3417
Page Range / eLocation ID:
11409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fingerprint capture systems can be fooled by widely accessible methods to spoof the system using fake fingers, known as presentation attacks. As biometric recognition systems become more extensively relied upon at international borders and in consumer electronics, presentation attacks are becoming an increasingly serious issue. A robust solution is needed that can handle the increased variability and complexity of spoofing techniques. This paper demonstrates the viability of utilizing a sensor with time-series and color-sensing capabilities to improve the robust-ness of a traditional fingerprint sensor and introduces a comprehensive fingerprint dataset with over 36,000 image sequences and a state-of-the-art set of spoofing techniques. The specific sensor used in this research captures a traditional gray-scale static capture and a time-series color capture simultaneously. Two different methods for Presentation Attack Detection (PAD) are used to assess the benefit of a color dynamic capture. The first algorithm utilizes Static-Temporal Feature Engineering on the fingerprint capture to generate a classification decision. The second generates its classification decision using features extracted by way of the Inception V3 CNN trained on ImageNet. Classification performance is evaluated using features extracted exclusively from the static capture, exclusively from the dynamic capture, and on a fusion of the two feature sets. With both PAD approaches we find that the fusion of the dynamic and static feature-set is shown to improve performance to a level not individually achievable. 
    more » « less
  2. Mobile devices typically rely on entry-point and other one-time authentication mechanisms such as a password, PIN, fingerprint, iris, or face. But these authentication types are prone to a wide attack vector and worse 1 INTRODUCTION Currently smartphones are predominantly protected a patterned password is prone to smudge attacks, and fingerprint scanning is prone to spoof attacks. Other forms of attacks include video capture and shoulder surfing. Given the increasingly important roles smartphones play in e-commerce and other operations where security is crucial, there lies a strong need of continuous authentication mechanisms to complement and enhance one-time authentication such that even if the authentication at the point of login gets compromised, the device is still unobtrusively protected by additional security measures in a continuous fashion. The research community has investigated several continuous authentication mechanisms based on unique human behavioral traits, including typing, swiping, and gait. To this end, we focus on investigating physiological traits. While interacting with hand-held devices, individuals strive to achieve stability and precision. This is because a certain degree of stability is required in order to manipulate and interact successfully with smartphones, while precision is needed for tasks such as touching or tapping a small target on the touch screen (Sitov´a et al., 2015). As a result, to achieve stability and precision, individuals tend to develop their own postural preferences, such as holding a phone with one or both hands, supporting hands on the sides of upper torso and interacting, keeping the phone on the table and typing with the preferred finger, setting the phone on knees while sitting crosslegged and typing, supporting both elbows on chair handles and typing. On the other hand, physiological traits, such as hand-size, grip strength, muscles, age, 424 Ray, A., Hou, D., Schuckers, S. and Barbir, A. Continuous Authentication based on Hand Micro-movement during Smartphone Form Filling by Seated Human Subjects. DOI: 10.5220/0010225804240431 In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 424-431 ISBN: 978-989-758-491-6 Copyrightc 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved still, once compromised, fail to protect the user’s account and data. In contrast, continuous authentication, based on traits of human behavior, can offer additional security measures in the device to authenticate against unauthorized users, even after the entry-point and one-time authentication has been compromised. To this end, we have collected a new data-set of multiple behavioral biometric modalities (49 users) when a user fills out an account recovery form in sitting using an Android app. These include motion events (acceleration and angular velocity), touch and swipe events, keystrokes, and pattern tracing. In this paper, we focus on authentication based on motion events by evaluating a set of score level fusion techniques to authenticate users based on the acceleration and angular velocity data. The best EERs of 2.4% and 6.9% for intra- and inter-session respectively, are achieved by fusing acceleration and angular velocity using Nandakumar et al.’s likelihood ratio (LR) based score fusion. 
    more » « less
  3. Reliably identifying and authenticating smartphones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smartphone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Authentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%. 
    more » « less
  4. Reliably identifying and authenticating smart- phones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smart- phone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Au- thentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%. 
    more » « less
  5. Physically unclonable hardware fingerprints can be used for device authentication. The photo-response non-uniformity (PRNU) is the most reliable hardware fingerprint of digital cameras and can be conveniently extracted from images. However, we find image post-processing software may introduce extra noise into images. Part of this noise remains in the extracted PRNU fingerprints and is hard to be eliminated by traditional approaches, such as denoising filters. We define this noise as software noise, which pollutes PRNU fingerprints and interferes with authenticating a camera armed device. In this paper, we propose novel approaches for fingerprint matching, a critical step in device authentication, in the presence of software noise. We calculate the cross correlation between PRNU fingerprints of different cameras using a test statistic such as the Peak to Correlation Energy (PCE) so as to estimate software noise correlation. During fingerprint matching, we derive the ratio of the test statistic on two PRNU fingerprints of interest over the estimated software noise correlation. We denote this ratio as the fingerprint to software noise ratio (FITS), which allows us to detect the PRNU hardware noise correlation component in the test statistic for fingerprint matching. Extensive experiments over 10,000 images taken by more than 90 smartphones are conducted to validate our approaches, which outperform the state-of-the-art approaches significantly for polluted fingerprints. We are the first to study fingerprint matching with the existence of software noise. 
    more » « less