skip to main content


Title: Late Deep Fusion of Color Spaces to Enhance Finger Photo Presentation Attack Detection in Smartphones
Finger photo recognition represents a promising touchless technology that offers portable and hygienic authentication solutions in smartphones, eliminating physical contact. Public spaces, such as banks and staff-less stores, benefit from contactless authentication considering the current public health sphere. The user captures the image of their own finger by using the camera integrated in a mobile device. Although recent research has pushed boundaries of finger photo matching, the security of this biometric methodology still represents a concern. Existing systems have been proven to be vulnerable to print attacks by presenting a color paper-printout in front of the camera and photo attacks that consist of displaying the original image in front of the capturing device. This paper aims to improve the performance of finger photo presentation attack detection (PAD) algorithms by investigating deep fusion strategies to combine deep representations obtained from different color spaces. In this work, spoofness is described by combining different color models. The proposed framework integrates multiple convolutional neural networks (CNNs), each trained using patches extracted from a specific color model and centered around minutiae points. Experiments were carried out on a publicly available database of spoofed finger photos obtained from the IIITD Smartphone Finger photo Database with spoof data, including printouts and various display attacks. The results show that deep fusion of the best color models improved the robustness of the PAD system and competed with the state-of-the-art.  more » « less
Award ID(s):
1822094
NSF-PAR ID:
10419402
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Sciences
Volume:
12
Issue:
22
ISSN:
2076-3417
Page Range / eLocation ID:
11409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fingerprint capture systems can be fooled by widely accessible methods to spoof the system using fake fingers, known as presentation attacks. As biometric recognition systems become more extensively relied upon at international borders and in consumer electronics, presentation attacks are becoming an increasingly serious issue. A robust solution is needed that can handle the increased variability and complexity of spoofing techniques. This paper demonstrates the viability of utilizing a sensor with time-series and color-sensing capabilities to improve the robust-ness of a traditional fingerprint sensor and introduces a comprehensive fingerprint dataset with over 36,000 image sequences and a state-of-the-art set of spoofing techniques. The specific sensor used in this research captures a traditional gray-scale static capture and a time-series color capture simultaneously. Two different methods for Presentation Attack Detection (PAD) are used to assess the benefit of a color dynamic capture. The first algorithm utilizes Static-Temporal Feature Engineering on the fingerprint capture to generate a classification decision. The second generates its classification decision using features extracted by way of the Inception V3 CNN trained on ImageNet. Classification performance is evaluated using features extracted exclusively from the static capture, exclusively from the dynamic capture, and on a fusion of the two feature sets. With both PAD approaches we find that the fusion of the dynamic and static feature-set is shown to improve performance to a level not individually achievable. 
    more » « less
  2. Face-swap-attacks (FSAs) are a new threat to face recognition systems. FSAs are essentially imperceptible replay-attacks using an injection device and generative networks. By placing the device between the camera and computer device, attackers can present any face as desired. This is particularly potent as it also maintains liveliness features, as it is a sophisticated alternation of a real person, and as it can go undetected by traditional anti-spoofing methods. To address FSAs, this research proposes a noise-verification framework. Even the best generative networks today leave alteration traces in the photo-response noise profile; these are detected by doing a comparison of challenge images against the camera enrollment. This research also introduces compression and sub-zone analysis for efficiency. Benchmarking with open-source tampering-detection algorithms shows the proposed compressed-PRNU verification robustly verifies facial-image authenticity while being significantly faster. This demonstrates a novel efficiency for mitigating face-swap-attacks, including denial-of-service attacks. 
    more » « less
  3. Reliably identifying and authenticating smartphones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smartphone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Authentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%. 
    more » « less
  4. Reliably identifying and authenticating smart- phones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smart- phone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Au- thentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%. 
    more » « less
  5. Traditional fingerprint authentication requires the acquisition of data through touch-based specialized sensors. However, due to many hygienic concerns including the global spread of the COVID virus through contact with a surface has led to an increased interest in contactless fingerprint image acquisition methods. Matching fingerprints acquired using contactless imaging against contact-based images brings up the problem of performing cross modal fingerprint matching for identity verification. In this paper, we propose a cost-effective, highly accurate and secure end-to-end contactless fingerprint recognition solution. The proposed framework first segments the finger region from an image scan of the hand using a mobile phone camera. For this purpose, we developed a cross-platform mobile application for fingerprint enrollment, verification, and authentication keeping security, robustness, and accessibility in mind. The segmented finger images go through fingerprint enhancement to highlight discriminative ridge-based features. A novel deep convolutional network is proposed to learn a representation from the enhanced images based on the optimization of various losses. The proposed algorithms for each stage are evaluated on multiple publicly available contactless databases. Our matching accuracy and the associated security employed in the system establishes the strength of the proposed solution framework. 
    more » « less