skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Sequence Mining to Analyze Metacognitive Monitoring and Scientific Inquiry based on Levels of Efficiency and Emotions during Game-Based Learning
Self-regulated learning conducted through metacognitive monitoring and scientific inquiry can be influenced by many factors, such as emotions and motivation, and are necessary skills needed to engage in efficient hypothesis testing during game-based learning. Although many studies have investigated metacognitive monitoring and scientific inquiry skills during game-based learning, few studies have investigated how the sequence of behaviors involved during hypothesis testing with game-based learning differ based on both efficiency level and emotions during gameplay. For this study, we analyzed 59 undergraduate students’ (59% female) metacognitive monitoring and hypothesis testing behavior during learning and gameplay with CRYSTAL ISLAND, a game-based learning environment that teaches students about microbiology. Specifically, we used sequential pattern mining and differential sequence mining to determine if there were sequences of hypothesis testing behaviors and to determine if the frequencies of occurrence of these sequences differed between high or low levels of efficiency at finishing the game and high or low levels of facial expressions of emotions during gameplay. Results revealed that students with low levels of efficiency and high levels of facial expressions of emotions had the most sequences of testing behaviors overall, specifically engaging in more sequences that were indicative of less strategic hypothesis testing behavior than the other students, where students who were more efficient with both levels of emotions demonstrated strategic testing behavior. These results have implications for the strengths of using educational data mining techniques for determining the processes underlying patterns of engaging in self-regulated learning conducted through hypothesis testing as they unfold over time; for training students on how to engage in the self-regulation, scientific inquiry, and emotion regulation processes that can result in efficient gameplay; and for developing adaptive game-based learning environments that foster effective and efficient self-regulation and scientific inquiry during learning.  more » « less
Award ID(s):
1661202
PAR ID:
10091349
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of educational data mining
Volume:
10
Issue:
3
ISSN:
2157-2100
Page Range / eLocation ID:
1-26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this study was to assess how metacognitive monitoring and scientific reasoning impacted the efficiency of game completion during learning with Crystal Island, a game-based learning environment that fosters self-regulated learning and scientific reasoning by having participants solve the mystery of what illness impacted inhabitants of the island. We conducted sequential pattern mining and differential sequence mining on 64 undergraduate participants’ hypothesis testing behavior. Patterns were coded based on the relevancy of what items were being tested for, and the items themselves. Results revealed that participants who were more efficient at solving the mystery tested significantly fewer partially-relevant and irrelevant items than less efficient participants. Additionally, more efficient participants had fewer sequences of testing items overall, and significantly lower instance support values of the PartiallyRelevant--Relevant to Relevant--Relevant and PartiallyRelevant--PartiallyRelevant to Relevant--Partially Relevant sequences compared to less efficient participants. These findings have implications for designing adaptive GBLEs that scaffold participants based on in-game behaviors. 
    more » « less
  2. Self-regulation is crucial for student success in scientific inquiry and engineering design. However, it remains unclear how students dynamically engage in self-regulated learning (SRL) processes to achieve high performance. In this study, we investigated the temporal nature of self-regulation during engineering design by leveraging computer trace data from 101 high school students who designed an energy-plus house in a simulated learning environment. Using sequential mining, we found that high-performing students were more engaged in the Observation, Analysis, and Evaluation phases of SRL than low-performing students. Additionally, high-performing students demonstrated consecutive sequential patterns between Observation and Analysis, Reformation and Evaluation, and Analysis and Evaluation behaviors. These findings provide insights into students’ SRL processes and the design of scaffoldings. 
    more » « less
  3. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Extensive research underscores the importance of stimulating students' interest in learning, as it can improve key educational outcomes such as self-regulation, collaboration, problem-solving, and overall enjoyment. Yet, the mechanisms through which interest manifests and impacts learning remain less explored, particularly in open-ended game-based learning environments like Minecraft. The unstructured nature of gameplay data in such settings poses analytical challenges. This study employed advanced data mining techniques, including changepoint detection and clustering, to extract meaningful patterns from students' movement data. Changepoint detection allows us to pinpoint significant shifts in behavior and segment unstructured gameplay data into distinct phases characterized by unique movement patterns. This research goes beyond traditional session-level analysis, offering a dynamic view of the learning process as it captures changes in student behaviors while they navigate challenges and interact with the environment. Three distinct exploration patterns emerged: surface-level exploration, in-depth exploration, and dynamic exploration. Notably, we found a negative correlation between surface-level exploration and interest development, whereas dynamic exploration positively correlated with interest development, regardless of initial interest levels. In addition to providing insights into how interest can manifest in Minecraft gameplay behavior, this paper makes significant methodological contributions by showcasing innovative approaches for extracting meaningful patterns from unstructured behavioral data within game-based learning environments. The implications of our research extend beyond Minecraft, offering valuable insights into the applications of changepoint detection in educational research to investigate student behavior in open-ended and complex learning settings. 
    more » « less
  4. The results we report are a product of the first iteration of a design-based study that uses a game, Vector Unknown, to support students in learning about vector equations in both algebraic and geometric contexts. While playing the game, students employed various numeric and geometric strategies that reflect differing levels of mathematical sophistication. Additionally, results indicate that students developed connections between the algebraic and geometric contexts during gameplay. The game’s design was a collaborative effort between mathematics educators and computer scientists and was based on a framework that integrates inquiry-oriented instruction and inquiry-based learning (IO/IBL), game-based learning (GBL), realistic mathematics education (RME). 
    more » « less
  5. Successful problem-based learning (PBL) often requires students to collectively regulate their learning processes as a group and engage in socially shared regulation of learning (SSRL). This paper focuses on how facilitators supported SSRL in the context of middle-school game-based PBL. Using conversation analysis, this study analyzed text-based chat messages of facilitators and students collected during gameplay. The analysis revealed direct modeling strategies such as performing regulative processes, promoting group awareness, and dealing with contingency as well as indirect strategies including prompting questions and acknowledgment of regulation, and the patterns of how facilitation faded to yield responsibilities to students to regulate their own learning. The findings will inform researchers and practitioners to design prompts and develop technological tools such as adaptive scaffolding to support SSRL in PBL or other collaborative inquiry processes. 
    more » « less