Research on self-regulated learning (SRL) in engineering design is growing. While SRL is an effective way of learning, however, not all learners can regulate themselves successfully. There is a lack of research regarding how student characteristics, such as science knowledge and design knowledge, interact with SRL. Adapting the SRL theory in the field of engineering design, this study proposes a research model to examine the mediation and causal relationships among science knowledge, design knowledge, and SRL activities (i.e. observation, formulation, reformulation, analysis, evaluation). Partial least squares modeling was utilized to examine how the science and design knowledge of 108 ninth-grade participants interacted with their SRL activities in the process of performing an engineering task. Results reveal that prior science and design knowledge positively predict SRL activities. They also show that reformulation and analysis are the two SRL activities that can lead to an improvement in post science and design knowledge, but excessive observation can hinder post design knowledge. These results have important implications for the construction of learning environments to support SRL based on students’ prior knowledge levels.
more »
« less
This content will become publicly available on October 1, 2025
Modeling temporal self-regulatory processes in STEM learning of engineering design
Self-regulation is crucial for student success in scientific inquiry and engineering design. However, it remains unclear how students dynamically engage in self-regulated learning (SRL) processes to achieve high performance. In this study, we investigated the temporal nature of self-regulation during engineering design by leveraging computer trace data from 101 high school students who designed an energy-plus house in a simulated learning environment. Using sequential mining, we found that high-performing students were more engaged in the Observation, Analysis, and Evaluation phases of SRL than low-performing students. Additionally, high-performing students demonstrated consecutive sequential patterns between Observation and Analysis, Reformation and Evaluation, and Analysis and Evaluation behaviors. These findings provide insights into students’ SRL processes and the design of scaffoldings.
more »
« less
- PAR ID:
- 10511914
- Publisher / Repository:
- International Forum of Educational Technology & Society
- Date Published:
- Journal Name:
- Educational technology society
- ISSN:
- 1436-4522
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Michalsky, Tova; Moos, Daniel (Ed.)Teachers’ ability to self-regulate their own learning is closely related to their competency to enhance self-regulated learning (SRL) in their students. Accordingly, there is emerging research for the design of teacher dashboards that empower instructors by providing access to quantifiable evidence of student performance and SRL processes. Typically, they capture evidence of student learning and performance to be visualized through activity traces (e.g., bar charts showing correct and incorrect response rates, etc.) and SRL data (e.g., eye-tracking on content, log files capturing feature selection, etc.) in order to provide teachers with monitoring and instructional tools. Critics of the current research on dashboards used in conjunction with advanced learning technologies (ALTs) such as simulations, intelligent tutoring systems, and serious games, argue that the state of the field is immature and has 1) focused only on exploratory or proof-of-concept projects, 2) investigated data visualizations of performance metrics or simplistic learning behaviors, and 3) neglected most theoretical aspects of SRL including teachers’ general lack of understanding their’s students’ SRL. Additionally, the work is mostly anecdotal, lacks methodological rigor, and does not collect critical process data (e.g. frequency, duration, timing, or fluctuations of cognitive, affective, metacognitive, and motivational (CAMM) SRL processes) during learning with ALTs used in the classroom. No known research in the areas of learning analytics, teacher dashboards, or teachers’ perceptions of students’ SRL and CAMM engagement has systematically and simultaneously examined the deployment, temporal unfolding, regulation, and impact of all these key processes during complex learning. In this manuscript, we 1) review the current state of ALTs designed using SRL theoretical frameworks and the current state of teacher dashboard design and research, 2) report the important design features and elements within intelligent dashboards that provide teachers with real-time data visualizations of their students’ SRL processes and engagement while using ALTs in classrooms, as revealed from the analysis of surveys and focus groups with teachers, and 3) propose a conceptual system design for integrating reinforcement learning into a teacher dashboard to help guide the utilization of multimodal data collected on students’ and teachers’ CAMM SRL processes during complex learning.more » « less
-
Researchers and educators have developed a variety of computer-based technologies intended to facilitate self-regulated learning (SRL), which refers to iterative learning processes wherein individuals set plans and goals, complete tasks, monitor their progress and outcomes, and adapt future efforts. This paper draws upon the SRL literature and related work to articulate two fundamental principles for designing SRL-promoting technologies: the Platform Principle and the Support Principle. The Platform Principle states that SRL-promoting technologies must incorporate clear platforms (i.e., tools and features) for engaging in planning, enacting, monitoring, and adapting. The Support Principle states that SRL-promoting technologies must include clear scaffolds for strategies, metacognition, motivation, and independence. These principles can be applied heuristically to formatively assess how and whether given learning technologies enable and scaffold self-regulation. More broadly, these assessments can empower educational technology creators and users to strategically design, communicate, and study technologies aligned with self-regulation. An exemplar application of the framework is presented using the PERvasive Learning System (PERLS) mobile SRL technology.more » « less
-
Self-regulated learning (SRL) is an essential factor in academic success. Self-regulated learning is a process where learners set clear goals, monitor progress toward attainment of those goals, and adapt their strategies to improve their learning. Because SRL is often not explicitly integrated into the classroom, students struggle to identify and use learning techniques empirically proven to be more successful than others. SRL is a learned skill students can develop over time that has been found to be related to high achievement and self-efficacy. This paper examines the effects of introducing SRL strategies into an undergraduate introductory physics classroom. The degree to which the students were self-regulated learners was correlated with their test averages (r = 0.23, p < 0.05). Students reported that they found the SRL instruction helpful (3.5 out of 5.0 on a 5-point scale) and 86% of the students felt the time spent on the instruction was generally appropriate. Students’ preferred study methods changed over the course of the semester, indicating that students applied SRL by adapting their learning processes based on which methods were most effective in helping them study for an upcoming exam and opting not to use techniques no longer perceived as useful. Higher achieving students were more likely to settle on highly effective techniques by the end of the semester, while lower achieving students continued to modify their learning processes.more » « less
-
Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage inself-regulated learning(SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits.more » « less