skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonparametric Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information
In supervised learning, we leverage a labeled dataset to design methods for function estimation. In many practical situations, we are able to obtain alternative feedback, possibly at a low cost. A broad goal is to understand the usefulness of, and to design algorithms to exploit, this alternative feedback. We focus on a semi-supervised setting where we obtain additional ordinal (or comparison) information for potentially unlabeled samples. We consider ordinal feedback of varying qualities where we have either a perfect ordering of the samples, a noisy ordering of the samples or noisy pairwise comparisons between the samples. We provide a precise quantification of the usefulness of these types of ordinal feedback in non-parametric regression, showing that in many cases it is possible to accurately estimate an underlying function with a very small labeled set, effectively escaping the curse of dimensionality. We develop an algorithm called Ranking-Regression (RR) and analyze its accuracy as a function of size of the labeled and unlabeled datasets and various noise parameters. We also present lower bounds, that establish fundamental limits for the task and show that RR is optimal in a variety of settings. Finally, we present experiments that show the efficacy of RR and investigate its robustness to various sources of noise and model-misspecification.  more » « less
Award ID(s):
1763734
PAR ID:
10091595
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Page Range / eLocation ID:
5469--5478
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesyari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)
    Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta-learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa learnIng usiNg sUbmodular Mutual information ), a novel semi-supervised model agnostic meta learning framework that uses the submodular mutual in- formation (SMI) functions to boost the perfor- mance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI func- tions during meta-training and obtains richer meta- learned parameterizations. We study the per- formance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a cer- tain episode, and 2) where there exist out-of- distribution classes that do not belong to the la- beled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and CIFAR-FS datasets. Our experiments show that PLATINUM outperforms MAML and semi- supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled to unlabeled samples. 
    more » « less
  2. The weighted constraint satisfaction problem (WCSP) is a powerful mathematical framework for combinatorial optimization. The branch-and-bound search paradigm is very successful in solving the WCSP but critically depends on the ordering in which variables are instantiated. In this paper, we introduce a new framework for dynamic variable ordering for solving the WCSP. This framework is inspired by regression decision tree learning. Variables are ordered dynamically based on samples of random assignments of values to variables as well as their corresponding total weights. Within this framework, we propose four variable ordering heuristics (sdr, inv-sdr, rr and inv-rr). We compare them with many state-of-the-art dynamic variable ordering heuristics, and show that sdr and rr outperform them on many real-world and random benchmark instances. 
    more » « less
  3. null (Ed.)
    Domain adaptation aims to correct the classifiers when faced with distribution shift between source (training) and target (test) domains. State-of-the-art domain adaptation methods make use of deep networks to extract domain-invariant representations. However, existing methods assume that all the instances in the source domain are correctly labeled; while in reality, it is unsurprising that we may obtain a source domain with noisy labels. In this paper, we are the first to comprehensively investigate how label noise could adversely affect existing domain adaptation methods in various scenarios. Further, we theoretically prove that there exists a method that can essentially reduce the side-effect of noisy source labels in domain adaptation. Specifically, focusing on the generalized target shift scenario, where both label distribution 𝑃𝑌 and the class-conditional distribution 𝑃𝑋|𝑌 can change, we discover that the denoising Conditional Invariant Component (DCIC) framework can provably ensures (1) extracting invariant representations given examples with noisy labels in the source domain and unlabeled examples in the target domain and (2) estimating the label distribution in the target domain with no bias. Experimental results on both synthetic and real-world data verify the effectiveness of the proposed method. 
    more » « less
  4. Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa-learnIng usiNg sUbmodular Mutual information), a novel semi-supervised model agnostic meta-learning framework that uses the submodular mutual information (SMI) functions to boost the performance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI functions during meta-training and obtains richer meta-learned parameterizations for meta-test. We study the performance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a certain episode, and 2) where there exist out-of-distribution classes that do not belong to the labeled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and Fewshot-CIFAR100 datasets. Our experiments show that PLATINUM outperforms MAML and semi-supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled examples per class. 
    more » « less
  5. Semi-supervised learning and weakly supervised learning are important paradigms that aim to reduce the growing demand for labeled data in current machine learning applications. In this paper, we introduce a novel analysis of the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002) that moreover takes advantage of useful prior information, specifically probabilistic hypothesized labels on the unlabeled data. We provide an error bound that exploits both the local geometric properties of the underlying graph and the quality of the prior information. We also propose a framework to incorporate multiple sources of noisy information. In particular, we consider the setting of weak supervision, where our sources of information are weak labelers. We demonstrate the ability of our approach on multiple benchmark weakly supervised classification tasks, showing improvements upon existing semi-supervised and weakly supervised methods. 
    more » « less