The ability to accurately quantify dielectrophoretic (DEP) force is critical in the development of high-efficiency microfluidic systems. This is the first reported work that combines a textile electrode-based DEP sensing system with deep learning in order to estimate the DEP forces invoked on microparticles. We demonstrate how our deep learning model can process micrographs of pearl chains of polystyrene (PS) microbeads to estimate the DEP forces experienced. Numerous images obtained from our experiments at varying input voltages were preprocessed and used to train three deep convolutional neural networks, namely AlexNet, MobileNetV2, and VGG19. The performances of all the models was tested for their validation accuracies. Models were also tested with adversarial images to evaluate performance in terms of classification accuracy and resilience as a result of noise, image blur, and contrast changes. The results indicated that our method is robust under unfavorable real-world settings, demonstrating that it can be used for the direct estimation of dielectrophoretic force in point-of-care settings. 
                        more » 
                        « less   
                    
                            
                            Multivariate Deep Causal Network for Time Series Forecasting in Interdependent Networks
                        
                    
    
            A novel multivariate deep causal network model (MDCN) is proposed in this paper, which combines the theory of conditional variance and deep neural networks to identify the cause-effect relationship between different interdependent time-series. The MCDN validation is conducted by a double step approach. The self validation is performed by information theory - based metrics, and the cross validation is achieved by a foresting application that combines the actual interdependent electricity, transportation, and weather datasets in the City of Tallahassee, Florida, USA. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1640587
- PAR ID:
- 10091760
- Date Published:
- Journal Name:
- 2018 IEEE Conference on Decision and Control (CDC)
- Page Range / eLocation ID:
- 6476 to 6481
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Interdependent critical infrastructures in coastal regions, including transportation, electrical grid, and emergency services, are continually threatened by storm-induced flooding. This has been demonstrated a number of times, most recently by hurricanes such as Harvey and Maria, as well as Sandy and Katrina. The need to protect these infrastructures with robust protection mechanisms is critical for our continued existence along the world’s coastlines. Planning these protections is non-trivial given the rare-event nature of strong storms and climate change manifested through sea level rise. This article proposes a framework for a methodology that combines multiple computational models, stakeholder interviews, and optimization to find an optimal protective strategy over time for critical coastal infrastructure while being constrained by budgetary considerations.more » « less
- 
            An influential node identification method considering multi-attribute decision fusion and dependencyAbstract It is essential to study the robustness and centrality of interdependent networks for building reliable interdependent systems. Here, we consider a nonlinear load-capacity cascading failure model on interdependent networks, where the initial load distribution is not random, as usually assumed, but determined by the influence of each node in the interdependent network. The node influence is measured by an automated entropy-weighted multi-attribute algorithm that takes into account both different centrality measures of nodes and the interdependence of node pairs, then averaging for not only the node itself but also its nearest neighbors and next-nearest neighbors. The resilience of interdependent networks under such a more practical and accurate setting is thoroughly investigated for various network parameters, as well as how nodes from different layers are coupled and the corresponding coupling strength. The results thereby can help better monitoring interdependent systems.more » « less
- 
            We propose an interdependent random geometric graph (RGG) model for interdependent networks. Based on this model, we study the robustness of two interdependent spatially embedded networks where interdependence exists between geographically nearby nodes in the two networks. We study the emergence of the giant mutual component in two interdependent RGGs as node densities increase, and define the percolation threshold as a pair of node densities above which the giant mutual component first appears. In contrast to the case for a single RGG, where the percolation threshold is a unique scalar for a given connection distance, for two interdependent RGGs, multiple pairs of percolation thresholds may exist, given that a smaller node density in one RGG may increase the minimum node density in the other RGG in order for a giant mutual component to exist. We derive analytical upper bounds on the percolation thresholds of two interdependent RGGs by discretization, and obtain 99% confidence intervals for the percolation thresholds by simulation. Based on these results, we derive conditions for the interdependent RGGs to be robust under random failures and geographical attacks.more » « less
- 
            We introduce the CRONOS algorithm for convex optimization of two-layer neural networks. CRONOS is the first algorithm capable of scaling to high-dimensional datasets such as ImageNet, which are ubiquitous in modern deep learning. This significantly improves upon prior work, which has been restricted to downsampled versions of MNIST and CIFAR-10. Taking CRONOS as a primitive, we then develop a new algorithm called CRONOS-AM, which combines CRONOS with alternating minimization, to obtain an algorithm capable of training multilayer networks with arbitrary architectures. Our theoretical analysis proves that CRONOS converges to the global minimum of the convex reformulation under mild assumptions. In addition, we validate the efficacy of CRONOS and CRONOS-AM through extensive large-scale numerical experiments with GPU acceleration in JAX. Our results show that CRONOS-AM can obtain comparable or better validation accuracy than predominant tuned deep learning optimizers on vision and language tasks with benchmark datasets such as ImageNet and IMDb. To the best of our knowledge, CRONOS is the first algorithm which utilizes the convex reformulation to enhance performance on large-scale learning tasksmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    