skip to main content


Title: Blocky bromination of syndiotactic polystyrene via post-polymerization functionalization in the heterogeneous gel state
This work demonstrates the successful blocky bromination of syndiotactic polystyrene (sPS- co -sPS-Br) copolymers containing 6–30 mol% p -bromostyrene units, using a post-polymerization functionalization method conducted in the heterogeneous gel state. For comparison, a matched set of randomly brominated sPS- co -sPS-Br copolymers was prepared using homogeneous (solution-state) reaction conditions. The degree of bromination and copolymer microstructure were evaluated using 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The NMR spectra of gel-state (Blocky) and solution-state (Random) copolymers exhibit strikingly different resonance frequencies and peak intensities above 6 mol% Br and provide direct evidence that functionalization in the gel state produces copolymers with non-random “blocky” microstructures. Quenched films of the Blocky copolymers, analyzed using ultra-small-angle X-ray scattering (USAXS) and small-angle X-ray scattering (SAXS), show micro-phase separated morphologies, which further supports that the Blocky copolymers contain distinct segments of pure sPS and segments of randomly brominated sPS unlike their completely Random analogs. Crystallization behavior of the copolymers, examined using differential scanning calorimetry (DSC), demonstrates that the Blocky copolymers are more crystallizable and crystallize faster at lower supercooling compared to their Random analogs. Computer simulations of the blocky copolymers were developed based on the semicrystalline morphology of a 10 w/v% sPS/CCl 4 gel, to rationalize the effect of heterogeneous functionalization on copolymer microstructure and crystallization behavior. The simulations were found to agree with the microstructural analysis based on the NMR results and confirm that restricting the accessibility of the brominating reagent to monomers well removed from the crystalline fraction of the gel network produces copolymers with a greater prevalence of long, uninterrupted sPS homopolymer sequences. Thus, the blocky microstructure is advantageous for preserving desired crystallizability of the resulting blocky copolymers.  more » « less
Award ID(s):
1809291
NSF-PAR ID:
10092150
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
9
Issue:
41
ISSN:
1759-9954
Page Range / eLocation ID:
5095 to 5106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stimuli-responsive polymers functionalized with reactive inorganic groups enable creation of macromolecular structures such as hydrogels, micelles, and coatings that demonstrate smart behavior. Prior studies using poly( N -isopropyl acrylamide- co -3-(trimethoxysilyl)propyl methacrylate) (P(NIPAM- co -TMA)) have stabilized micelles and produced functional nanoscale coatings; however, such systems show limited responsiveness over multiple thermal cycles. Here, polymer architecture and TMA content are connected to the aqueous self-assembly, optical response, and thermoreversibility of two distinct types of PNIPAM/TMA copolymers: random P(NIPAM- co -TMA), and a ‘blocky-functionalized’ copolymer where TMA is localized to one portion of the chain, P(NIPAM- b -NIPAM- co -TMA). Aqueous solution behavior characterized via cloud point testing (CPT), dynamic light scattering (DLS), and variable-temperature nuclear magnetic resonance spectroscopy (NMR) demonstrates that thermoresponsiveness and thermoreversibility over multiple cycles is a strong function of polymer configuration and TMA content. Despite low TMA content (≤2 mol%), blocky-functionalized copolymers assemble into small, well-ordered structures above the cloud point that lead to distinct transmittance behaviors and stimuli-responsiveness over multiple cycles. Conversely, random copolymers form disordered aggregates at elevated temperatures, and only exhibit thermoreversibility at negligible TMA fractions (0.5 mol%); higher TMA content leads to irreversible structure formation. This understanding of the architectural and assembly effects on the thermal cyclability of aqueous PNIPAM- co -TMA can be used to improve the scalability of responsive polymer applications requiring thermoreversible behavior, including sensing, separations, and functional coatings. 
    more » « less
  2. Abstract

    Bis‐carbonylimidazolide (BCI) functionalization enables an efficient synthetic strategy to generate high molecular weight segmented nonisocyanate polyurethanes (NIPUs). Melt phase polymerization of ED‐2003 Jeffamine,4,4′‐methylenebis(cyclohexylamine), and a BCI monomer that mimics a 1,4‐butanediol chain extender enables polyether NIPUs that contain varying concentrations of hard segments ranging from 40 to 80 wt. %. Dynamic mechanical analysis and differential scanning calorimetry reveal thermal transitions for soft, hard, and mixed phases. Hard segment incorporations between 40 and 60 wt. % display up to three distinct phases pertaining to the poly(ethylene glycol) (PEG) soft segmentTg, melting transition, and hard segmentTg, while higher hard segment concentrations prohibit soft segment crystallization, presumably due to restricted molecular mobility from the hard segment. Atomic force microscopy allows for visualization and size determination of nanophase‐separated regimes, revealing a nanoscale rod‐like assembly of HS. Small‐angle X‐ray scattering confirms nanophase separation within the NIPU, characterizing both nanoscale amorphous domains and varying degrees of crystallinity. These NIPUs, which are synthesized with BCI monomers, display expected phase separation that is comparable to isocyanate‐derived analogues. This work demonstrates nanophase separation in BCI‐derived NIPUs and the feasibility of this nonisocyanate synthetic pathway for the preparation of segmented PU copolymers.

     
    more » « less
  3. Abstract

    Polymeric membrane‐based gas separation technology has significant advantages compared with traditional amine‐based CO2separation method. In this work, SEBS block copolymer is used as a polymer matrix to incorporate triethylene oxide (TEO) functionality. The short ethylene oxide segment is chosen to avoid crystallization, which is confirmed by differential scanning calorimetry and wide‐angle X‐ray scattering characterizations. The gas permeability results reveal that CO2/N2selectivity increased with increasing content of TEO functional group. The highest CO2permeability (281 Barrer) and CO2/N2selectivity (31) were obtained for the membrane with the highest TEO incorporation (57 mol%). Increasing the TEO content in these copolymers results in an increase in CO2solubility and a decrease in C2H6solubility. For example, as the grafted TEO content increased from 0 to 57 mol%, the CO2solubility and CO2/C2H6solubility selectivity increased from 0.72 to 1.3 cm3(STP)/cm3atm and 0.47 to 1.3 at 35°C, respectively. The polar ether linkage in TEO‐grafted SEBS copolymers exhibits favorable interaction with CO2and unfavorable interaction with nonpolar C2H6, thus enhancing CO2/C2H6solubility selectivity.

     
    more » « less
  4. This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths. 
    more » « less
  5. Abstract

    Styrenic thermoplastic elastomers (TPEs) in the form of triblock copolymers possessing glassy endblocks and a rubbery midblock account for the largest global market of TPEs worldwide, and typically rely on microphase separation of the endblocks and the subsequent formation of rigid microdomains to ensure satisfactory network stabilization. In this study, the morphological characteristics of a relatively new family of crystallizable TPEs that instead consist of polyethylene endblocks and a random‐copolymer midblock composed of styrene and (ethylene‐co‐butylene) moieties are investigated. Copolymer solutions prepared at logarithmic concentrations in a slightly endblock‐selective solvent are subjected to crystallization under different time and temperature conditions to ascertain if copolymer self‐assembly is directed by endblock crystallization or vice versa. According to transmission electron microscopy, semicrystalline aggregates develop at the lowest solution concentration examined (0.01 wt%), and the size and population of crystals, which dominate the copolymer morphologies, are observed to increase with increasing aging time. Real‐space results are correlated with small‐ and wide‐angle X‐ray scattering to elucidate the concurrent roles of endblock crystallization and self‐assembly of these unique TPEs in solution.

     
    more » « less