skip to main content


Title: Utilizing SMAP Soil Moisture Data to Constrain Irrigation in the Community Land Model
Abstract

Irrigation representation in land surface models has been advanced over the past decade, but the soil moisture (SM) data from SMAP satellite have not yet been utilized in large‐scale irrigation modeling. Here we investigate the potential of improving irrigation representation in the Community Land Model version‐4.5 (CLM4.5) by assimilating SMAP data. Simulations are conducted over the heavily irrigated central U.S. region. We find that constraining the target SM in CLM4.5 using SMAP data assimilation with 1‐D Kalman filter reduces the root‐mean‐square error of simulated irrigation water requirement by 50% on average (for Nebraska, Kansas, and Texas) and significantly improves irrigation simulations by reducing the bias in irrigation water requirement by up to 60%. An a priori bias correction of SMAP data further improves these results in some regions but incrementally. Data assimilation also enhances SM simulations in CLM4.5. These results could provide a basis for improved modeling of irrigation and land‐atmosphere interactions.

 
more » « less
Award ID(s):
1752729
NSF-PAR ID:
10452709
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
45
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in its results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables. 
    more » « less
  2. Irrigation is the primary consumer of freshwater by humans and accounts for over 70% of all annual water use. However, due to the shortage of open critical information in agriculture such as soil, precipitation, and crop status, farmers heavily rely on empirical knowledge to schedule irrigation and tend to excessive irrigation to ensure crop yields. This paper presents WaterSmart-GIS, a web-based geographic information system (GIS), to collect and disseminate near-real-time information critical for irrigation scheduling, such as soil moisture, evapotranspiration, precipitation, and humidity, to stakeholders. The disseminated datasets include both numerical model results of reanalysis and forecasting from HRLDAS (High-Resolution Land Data Assimilation System), and the remote sensing datasets from NASA SMAP (Soil Moisture Active Passive) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The system aims to quickly and easily create a smart, customized irrigation scheduler for individual fields to relieve the burden on farmers and to significantly reduce wasted water, energy, and equipment due to excessive irrigation. The system is prototyped here with an application in Nebraska, demonstrating its ability to collect and deliver information to end-users via the web application, which provides online analytic functionality such as point-based query, spatial statistics, and timeseries query. Systems such as this will play a critical role in the next few decades to sustain agriculture, which faces great challenges from climate change and increased natural disasters. 
    more » « less
  3. Agricultural irrigation has significant potential for altering local climate by reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model‐based results have not been well validated due to the limitations of observational data sets. In this study, multiple satellite‐based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling by irrigation lowers daytime surface temperature over arid and semi‐arid regions, such as California's Central Valley, the Great Plains, central Asia, and northwestern India. However, the cooling effects are less evident in areas of eastern China and the Lower Mississippi River Basin despite extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land–atmosphere interactions in regards to irrigation. CESM greatly underestimates the surface temperature response to irrigation. The comparison between the offline and coupled simulations suggests that the irrigation‐induced cooling can be regulated by the interactions between land surface and atmosphere, and amplified signals are found over the “hot spot” regions. Meanwhile, model resolution can also influence the magnitude of the local cooling by irrigation.

     
    more » « less
  4. Abstract

    This study investigates the impact of direct versus indirect initialization of soil moisture (SM) and soil temperature (ST) on monsoon depressions (MDs) and heavy rainfall simulations over India. SM/ST products obtained from high‐resolution, land data assimilation system (LDAS) are used in the direct initialization of land surface conditions in the ARW modeling system. In the indirect method, the initial SM is sequentially adjusted through the flux‐adjusting surface data assimilation system (FASDAS). These two approaches are compared with a control experiment (CNTL) involving climatological SM/ST conditions for eight MDs at 4‐km horizontal resolution. The surface fields simulated by the LDAS run showed the highest agreement, followed by FASDAS for relatively dry June cases, but the error is high (~15–30%) for the relatively wet August cases. The moisture budget indicates that moisture convergence and local influence contributed more to rainfall. The surface‐rainfall feedback analysis reveals that surface conditions and evaporation have a dominant impact on the rainfall simulation and these couplings are notable in LDAS runs. The contiguous rain area (CRA) method indicates better performance of LDAS for very heavy rainfall distribution, and the location (ETS > 0.2), compared to FASDAS and CNTL. The pattern error contributes the maximum to the total rainfall error, and the displacement error is more in August cases' rainfall than that in June cases. Overall analyses indicated that the role of land conditions is significantly high in the drier month (June) than a wet month (August), and direct initialization of SM/ST fields yielded improved MD and heavy rain simulations.

     
    more » « less
  5. Abstract

    Large-scale changes in the state of the land surface affect the circulation of the atmosphere and the structure and function of ecosystems alike. As global temperatures increase and regional climates change, the timing of key plant phenophase changes are likely to shift as well. Here we evaluate a suite of phenometrics designed to facilitate an “apples to apples” comparison between remote sensing products and climate model output. Specifically, we derive day-of-year (DOY) thresholds of leaf area index (LAI) from both remote sensing and the Community Land Model (CLM) over the Northern Hemisphere. This systematic approach to comparing phenologically relevant variables reveals appreciable differences in both LAI seasonal cycle and spring onset timing between model simulated phenology and satellite records. For example, phenological spring onset in the model occurs on average 30 days later than observed, especially for evergreen plant functional types. The disagreement in phenology can result in a mean bias of approximately 5% of the total estimated Northern Hemisphere NPP. Further, while the more recent version of CLM (v5.0) exhibits seasonal mean LAI values that are in closer agreement with satellite data than its predecessor (CLM4.5), LAI seasonal cycles in CLM5.0 exhibit poorer agreement. Therefore, despite broad improvements for a range of states and fluxes from CLM4.5 to CLM5.0, degradation of plant phenology occurs in CLM5.0. Therefore, any coupling between the land surface and the atmosphere that depends on vegetation state might not be fully captured by the existing generation of the model. We also discuss several avenues for improving the fidelity between observations and model simulations.

     
    more » « less