skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validation and Calibration of HRLDAS Soil Moisture Products in Nebraska
Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in its results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables.  more » « less
Award ID(s):
1739705
PAR ID:
10376791
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 10th International Conference on Agro-geoinformatics (Agro-Geoinformatics)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Root zone soil moisture (RZSM) is a dominant control on crop productivity, land-atmosphere feedbacks, and the hydrologic response of watersheds. Despite its importance, obtaining gap-free daily moisture data remains challenging. For example, remote sensing-based soil moisture products often have gaps arising from limits posed by the presence of clouds and satellite revisit period. Here, we retrieve a proxy of daily RZSM using the actual evapotranspiration (ETa) estimates from Surface Flux Equilibrium Theory (SFET). Our method is calibration-less, parsimonious, and only needs widely available meteorological data and standard land-surface parameters. Evaluation of the retrievals at Oklahoma Mesonet sites shows that our method, overall, matches or outperforms widely available RZSM estimates from three markedly different approaches, viz. remote sensing data based Atmosphere-Land EXchange Inversion (ALEXI) model, the Variable Infiltration Capacity (VIC) model, and the Soil Moisture Active Passive (SMAP) mission RZSM data product. When compared with in-situ observations, unbiased root mean square difference of retrieved RZSM were 0.03 (m 3 m −3 ), 0.06 (m 3 m −3 ), and 0.05 (m 3 m −3 ) for our method, the ALEXI model, and the VIC model, respectively. Better performance of our method is attributed to the use of both SFET for the estimation of ETa and non-parametric kernel-based method used to relate the RZSM with ETa. RZSM from our method may serve as a more accurate and temporally-complete alternative for a variety of applications including mapping of agricultural droughts, assimilation of RZSM for hydrometeorological forecasting, and design of optimal irrigation schedules. 
    more » « less
  2. Given the increasing prevalence of droughts, unpredictable rainfall patterns, and limited access to dependable water sources in the United States and worldwide, it has become crucial to implement effective irrigation scheduling strategies. Irrigation is triggered when some variables, such as soil moisture or accumulated water deficit, exceed a given threshold in the most common approaches applied in irrigation scheduling. A High-Resolution Land Data Assimilation System (HRLDAS) was used in this study to generate timely and accurate soil moisture and evapotranspiration (ET) data for irrigation management. By integrating HRLDAS products and the crop growth model (AquaCrop), an automated data-driven irrigation scheduling approach was developed and evaluated. For HRLDAS ET and soil moisture, the ET-water balance (ET-WB)-based method and soil-moisture-based method were applied accordingly. The ET-WB-based method showed a 10.6~33.5% water-saving result in dry and set seasons, whereas the soil moisture-based method saved 7.2~37.4% of irrigation water in different weather conditions. Both of these methods demonstrated good results in saving water (with a varying range of 10~40%) without harming crop yield. The optimized thresholds in the two approaches were partially consistent with the default values from the Food and Agriculture Organization and showed a similar trend in the growing season. Furthermore, the forecasted rainfall was integrated into this model to see its water-saving effect. The results showed that an additional 10% of irrigation water, which is 20~50%, can be saved without harming the crop yield. This study automated the data-driven approach for irrigation scheduling by taking advantage of HRLDAS products, which can be generated in a near-real-time manner. The results indicated the great potential of this automated approach for saving water and irrigation decision making. 
    more » « less
  3. Irrigation is the primary consumer of freshwater by humans and accounts for over 70% of all annual water use. However, due to the shortage of open critical information in agriculture such as soil, precipitation, and crop status, farmers heavily rely on empirical knowledge to schedule irrigation and tend to excessive irrigation to ensure crop yields. This paper presents WaterSmart-GIS, a web-based geographic information system (GIS), to collect and disseminate near-real-time information critical for irrigation scheduling, such as soil moisture, evapotranspiration, precipitation, and humidity, to stakeholders. The disseminated datasets include both numerical model results of reanalysis and forecasting from HRLDAS (High-Resolution Land Data Assimilation System), and the remote sensing datasets from NASA SMAP (Soil Moisture Active Passive) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The system aims to quickly and easily create a smart, customized irrigation scheduler for individual fields to relieve the burden on farmers and to significantly reduce wasted water, energy, and equipment due to excessive irrigation. The system is prototyped here with an application in Nebraska, demonstrating its ability to collect and deliver information to end-users via the web application, which provides online analytic functionality such as point-based query, spatial statistics, and timeseries query. Systems such as this will play a critical role in the next few decades to sustain agriculture, which faces great challenges from climate change and increased natural disasters. 
    more » « less
  4. Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources. 
    more » « less
  5. Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability. 
    more » « less