- Award ID(s):
- 1739705
- PAR ID:
- 10376782
- Date Published:
- Journal Name:
- ISPRS International Journal of Geo-Information
- Volume:
- 11
- Issue:
- 5
- ISSN:
- 2220-9964
- Page Range / eLocation ID:
- 271
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
e. Precision agriculture accounts for within-field variability for targeted treatment rather than uniform treatment of an entire field. It is built on agricultural mechanization and state-of-the-art technologies of geographical information systems (GIS), global positioning systems (GPS) and remote sensing, and is used to monitor soil, crop growth, weed infestation, insects, diseases, and water status in farm fields to provide data and information to guide agricultural management practices. Precision agriculture began with mapping of crop fields at different scales to support agricultural planning and decision making. With the development of variable-rate technology, precision agriculture focuses more on tactical actions in controlling variable-rate seeding, fertilizer and pesticide application, and irrigation in real-time or within the crop season instead of mapping a field in one crop season to make decisions for the next crop season. With the development of aerial variable-rate systems, low-altitude airborne systems can provide high-resolution data for prescription variable-rate.more » « less
-
Given the increasing prevalence of droughts, unpredictable rainfall patterns, and limited access to dependable water sources in the United States and worldwide, it has become crucial to implement effective irrigation scheduling strategies. Irrigation is triggered when some variables, such as soil moisture or accumulated water deficit, exceed a given threshold in the most common approaches applied in irrigation scheduling. A High-Resolution Land Data Assimilation System (HRLDAS) was used in this study to generate timely and accurate soil moisture and evapotranspiration (ET) data for irrigation management. By integrating HRLDAS products and the crop growth model (AquaCrop), an automated data-driven irrigation scheduling approach was developed and evaluated. For HRLDAS ET and soil moisture, the ET-water balance (ET-WB)-based method and soil-moisture-based method were applied accordingly. The ET-WB-based method showed a 10.6~33.5% water-saving result in dry and set seasons, whereas the soil moisture-based method saved 7.2~37.4% of irrigation water in different weather conditions. Both of these methods demonstrated good results in saving water (with a varying range of 10~40%) without harming crop yield. The optimized thresholds in the two approaches were partially consistent with the default values from the Food and Agriculture Organization and showed a similar trend in the growing season. Furthermore, the forecasted rainfall was integrated into this model to see its water-saving effect. The results showed that an additional 10% of irrigation water, which is 20~50%, can be saved without harming the crop yield. This study automated the data-driven approach for irrigation scheduling by taking advantage of HRLDAS products, which can be generated in a near-real-time manner. The results indicated the great potential of this automated approach for saving water and irrigation decision making.
-
Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in its results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables.more » « less
-
Abstract The rapid decline of groundwater resources in South Asia due to excessive irrigation during dry season requires awareness of optimal on‐field water requirements. Such information is currently provided on farmer cellphones through an operational Irrigation Advisory System (IAS). To minimize the cost of sending such irrigation advisory texts to farmers while maximizing impact of IAS on groundwater sustainability, we integrated Gravity Recovery and Climate Experiment (GRACE) data with Landsat Thermal Infrared (TIR) Imagery to target regions in greater need of the IAS service. We demonstrated the concept of an improved IAS over eight irrigation districts of the Ganges and Indus basins. The Surface Energy Balance Algorithm for Land (SEBAL) was used to monitor on‐field water consumption (evapotranspiration‐ET) over cropped areas using Landsat TIR data at plot‐scale spatial resolution. Comparison of SEBAL ET with crop water demand from Penman‐Monteith (FAO56) technique quantified the extent of overirrigation at the plot scale and provided a tangible pathway to microtarget the IAS service only to farmers with the largest groundwater use footprint, thereby improving the impact of the IAS service further. Our results suggested that an operational IAS that integrates GRACE and Landsat TIR data on average can save about 85% (80 million m3) of groundwater per dry season for irrigation districts of Northern India and 87% (or 150 million m3) per year for irrigation districts of Eastern Pakistan.
-
Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability.more » « less