skip to main content


Title: Mixed Reality Deictic Gesture for Multi-Modal Robot Communication
In previous work, researchers have repeatedly demonstrated that robots' use of deictic gestures enables effective and natural human-robot interaction. However, new technologies such as augmented reality head mounted displays enable environments in which mixed-reality becomes possible, and in such environments, physical gestures become but one category among many different types of mixed reality deictic gestures. In this paper, we present the first experimental exploration of the effectiveness of mixed reality deictic gestures beyond physical gestures. Specifically, we investigate human perception of videos simulating the display of allocentric gestures, in which robots circle their targets in users' fields of view. Our results suggest that this is an effective communication strategy, both in terms of objective accuracy and subjective perception, especially when paired with complex natural language references.  more » « less
Award ID(s):
1823245
NSF-PAR ID:
10092943
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
14th {ACM/IEEE} International Conference on Human-Robot Interaction
Page Range / eLocation ID:
191 to 201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mixed Reality provides a powerful medium for transparent and effective human-robot communication, especially for robots with significant physical limitations (e.g., those without arms). To enhance nonverbal capabilities for armless robots, this article presents two studies that explore two different categories of mixed reality deictic gestures for armless robots: a virtual arrow positioned over a target referent (a non-ego-sensitive allocentric gesture) and a virtual arm positioned over the gesturing robot (an ego-sensitive allocentric gesture). In Study 1, we explore the tradeoffs between these two types of gestures with respect to both objective performance and subjective social perceptions. Our results show fundamentally different task-oriented versus social benefits, with non-ego-sensitive allocentric gestures enabling faster reaction time and higher accuracy, but ego-sensitive gestures enabling higher perceived social presence, anthropomorphism, and likability. In Study 2, we refine our design recommendations by showing that in fact these different gestures should not be viewed as mutually exclusive alternatives, and that by using them together, robots can achieve both task-oriented and social benefits. 
    more » « less
  2. Augmented Reality (AR) technologies present an exciting new medium for human-robot interactions, enabling new opportunities for both implicit and explicit human-robot communication. For example, these technologies enable physically-limited robots to execute non-verbal interaction patterns such as deictic gestures despite lacking the physical morphology necessary to do so. However, a wealth of HRI research has demonstrated real benefits to physical embodiment (compared to, e.g., virtual robots on screens), suggesting AR augmentation of virtual robot parts could face challenges.In this work, we present empirical evidence comparing the use of virtual (AR) and physical arms to perform deictic gestures that identify virtual or physical referents. Our subjective and objective results demonstrate the success of mixed reality deictic gestures in overcoming these potential limitations, and their successful use regardless of differences in physicality between gesture and referent. These results help to motivate the further deployment of mixed reality robotic systems and provide nuanced insight into the role of mixed-reality technologies in HRI contexts. 
    more » « less
  3. Mixed reality visualizations provide a powerful new approach for enabling gestural capabilities for non-humanoid robots. This paper explores two different categories of mixed-reality deictic gestures for armless robots: a virtual arrow positioned over a target referent (a non-ego-sensitive allocentric gesture) and a virtual arrow positioned over the robot (an ego-sensitive allocentric gesture). We explore the trade-offs between these two types of gestures, with respect to both objective performance and subjective social perceptions. We conducted a 24-participant within-subjects experiment in which a HoloLens-wearing participant interacted with a robot that used these two types of gestures to refer to objects at two different distances. Our results demonstrate a clear trade-off between performance and social perception: non-ego-sensitive allocentric gestures led to quicker reaction time and higher accuracy, but ego-sensitive gesture led to higher perceived social presence, anthropomorphism, and likability. These results present a challenging design decision to creators of mixed reality robotic systems 
    more » « less
  4. null (Ed.)
    Mixed Reality visualizations provide a powerful new approach for enabling gestural capabilities on non-humanoid robots. This paper explores two different categories of mixed-reality deictic gestures for armless robots: a virtual arrow positioned over a target referent (a non-ego-sensitive allocentric gesture) and a virtual arm positioned over the gesturing robot (an ego-sensitive allocentric gesture). Specifically, we present the results of a within-subjects Mixed Reality HRI experiment (N=23) exploring the trade-offs between these two types of gestures with respect to both objective performance and subjective social perceptions. Our results show a clear trade-off between performance and social perception, with non-ego-sensitive allocentric gestures enabling faster reaction time and higher accuracy, but ego-sensitive gestures enabling higher perceived social presence, anthropomorphism, and likability. 
    more » « less
  5. Recently, researchers have initiated a new wave of convergent research in which Mixed Reality visualizations enable new modalities of human-robot communication, including Mixed Reality Deictic Gestures (MRDGs) – the use of visualizations like virtual arms or arrows to serve the same purpose as traditional physical deictic gestures. But while researchers have demonstrated a variety of benefits to these gestures, it is unclear whether the success of these gestures depends on a user’s level and type of cognitive load. We explore this question through an experiment grounded in rich theories of cognitive resources, attention, and multi-tasking, with significant inspiration drawn from Multiple Resource Theory. Our results suggest that MRDGs provide task-oriented benefits regardless of cognitive load, but only when paired with complex language. These results suggest that designers can pair rich referring expressions with MRDGs without fear of cognitively overloading their users. 
    more » « less