Recently, post-transcriptional regulation of mRNA mediated by N6-methyladenosine (m6A) has been found to have profound effects on transcriptome regulation during plant responses to various abiotic stresses. However, whether this RNA modification can affect an oxidative stress response in plants has not been studied. To assess the role of m6A modifications during copper-induced oxidative stress responses, m6A-IP-seq was performed in Arabidopsis seedlings exposed to high levels of copper sulfate. This analysis revealed large-scale shifts in this modification on the transcripts most relevant for oxidative stress. This altered epitranscriptomic mark is known to influence transcript abundance and translation; therefore we scrutinized these possibilities. We found an increased abundance of copper-enriched m6A-containing transcripts. Similarly, we also found increased ribosome occupancy of copper-enriched m6A-containing transcripts, specifically those encoding proteins involved with stress responses relevant to oxidative stressors. Furthermore, the significance of the m6A epitranscriptome on plant oxidative stress tolerance was uncovered by assessing germination and seedling development of the mta (N6-methyladenosine RNA methyltransferase A mutant complemented with ABI3:MTA) mutant exposed to high copper treatment. These analyses suggested hypersensitivity of the mta mutant compared to the wild-type plants in response to copper-induced oxidative stress. Overall, our findings suggest an important role for m6A in the oxidative stress response of Arabidopsis.
more »
« less
Contribution of YjbIH to virulence factor expression and host colonization in Staphylococcus aureus
To persist within the host and cause disease, Staphylococcus aureus relies on its ability to precisely fine-tune virulence factor expression in response to rapidly-changing environments. During an unbiased transposon mutant screen, we observed that disruption of the two-gene operon, yjbIH , resulted in decreased pigmentation and aureolysin activity relative to the wild-type strain. Further analyses revealed that YjbH, a predicted thioredoxin-like oxidoreductase, is mostly responsible for the observed yjbIH mutant phenotypes, though a minor role exists for the putative truncated hemoglobin YjbI. These differences were due to significantly decreased expression of crtOPQMN and aur . Previous studies found that YjbH targets the disulfide- and oxidative-stress responsive regulator Spx for degradation by ClpXP. The absence of yjbH or yjbI resulted in altered sensitivities to nitrosative and oxidative stress and iron deprivation. Additionally, aconitase activity was altered in the yjbH and yjbI mutant strains. Decreased pigmentation and Aur activity in the yjbH mutant was found to be Spx-dependent. Lastly, we used a murine sepsis model to determine the effect of the yjbIH deletion on pathogenesis and found that the mutant was better able to colonize the kidneys and spleens during an acute infection than the wild-type strain. These studies identify changes in pigmentation and protease activity in response to YjbIH and are the first to show a role for these proteins during infection.
more »
« less
- Award ID(s):
- 1750624
- PAR ID:
- 10093136
- Date Published:
- Journal Name:
- Infection and Immunity
- ISSN:
- 0019-9567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Forche, Anja (Ed.)TheCandida albicansgenome contains between ten and fifteen distinctTLOgenes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo inC.albicanswe deleted all fourteenTLOgenes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in thetloΔ mutant strain compared to the parent, while RNA-seq analysis showed that thetloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, thetloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLOclades resulted in the complementation of the mutant phenotypes, but to different degrees.TLOα1could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLOgenes examined (i.e.,TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression ofTLOβ2in thetloΔmutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegratedTLOgenes in atloΔ/med3Δdouble mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range ofC.albicanscellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.more » « less
-
Silhavy, Thomas J. (Ed.)ABSTRACT Expression of the Escherichia coli dnaN -encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (β E202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaN E202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB , that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the β clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaN E202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the β E202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB -encoded RNR relieved the growth defect caused by elevated levels of the β clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated β clamp levels to impede growth and suggest either that multiple effects stemming from the dnaN E202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the β clamp-Hda complex. The dnaN E202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaN E202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and β E202K clamp proteins support equivalent levels of Hda activity in vitro . Taken together, these results suggest that β E202K -Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed.more » « less
-
Abstract Under synchronized conidiation, over 2500 gene products show differential expression, including transcripts for bothbrlAandabaA, which increase steadily over time. In contrast, during wall-stress induced by the echinocandin micafungin, thebrlAtranscript is upregulated while theabaAtranscript is not. In addition, whenmpkA(last protein kinase in the cell wall integrity signaling pathway) is deleted,brlAexpression is not upregulated in response to wall stress. Together, these data imply BrlA may play a role in a cellular stress-response which is independent of the canonical BrlA-mediated conidiation pathway. To test this hypothesis, we performed a genome-wide search and found 332 genes with a putative BrlA response element (BRE) in their promoter region. From this set, we identified 28 genes which were differentially expressed in response to wall-stress, but not during synchronized conidiation. This set included seven gene products whose homologues are involved in transmembrane transport and 14 likely to be involved in secondary metabolite biosynthesis. We selected six of these genes for further examination and find that they all show altered expression behavior in thebrlAdeletion strain. Together, these data support the idea that BrlA plays a role in various biological processes outside asexual development. ImportanceTheAspergillus nidulanstranscription factor BrlA is widely accepted as a master regulator of conidiation. Here, we show that in addition to this function BrlA appears to play a role in responding to cell-wall stress. We note that this has not been observed outsideA. nidulans. Further, BrlA-mediated conidiation is highly conserved acrossAspergillusspecies, so this new functionality is likely relevant in otherAspergilli. We identified several transmembrane transporters that have altered transcriptional responses to cell-wall stress in abrlAdeletion mutant. Based on our observation, together with what is known about thebrlAgene locus’ regulation, we identifybrlAβas the likely intermediary in function ofbrlAin the response to cell-wall stress.more » « less
-
Zinc ion (Zn 2+ ) is an essential micronutrient and a potent antioxidant. However, Zn 2+ is often limited in the environment. Upon Zn 2+ limitation, Mycolicibacterium (basonym: Mycobacterium ) smegmatis (Msm) undergoes a morphogenesis, which relies on alternative ribosomal proteins (AltRPs); i.e., Zn 2+ -independent paralogues of Zn 2+ -dependent ribosomal proteins. However, the underlying physiological changes triggered by Zn 2+ limitation and how AltRPs contribute to these changes were not known. In this study, we expand the knowledge of mechanisms utilized by Msm to endure Zn 2+ limitation, by comparing the transcriptomes and proteomes of Zn 2+ -limited and Zn 2+ -replete Msm . We further compare, corroborate and contrast our results to those reported for the pathogenic mycobacterium, M. tuberculosis , which highlighted conservation of the upregulated oxidative stress response when Zn 2+ is limited in both mycobacteria. By comparing the multi-omics analysis of a knockout mutant lacking AltRPs (Δ altRP ) to the Msm wild type strain, we specify the involvement of AltRPs in the response to Zn 2+ limitation. Our results show that AltRP expression in Msm does not affect the conserved oxidative stress response during Zn 2+ limitation observed in mycobacteria, but AltRPs do significantly impact expression patterns of numerous genes that may be involved in morphogenesis or other adaptive responses. We conclude that AltRPs are not only important as functional replacements for their Zn 2+ -dependent paralogues; they are also involved in the transcriptomic response to the Zn 2+ -limited environment.more » « less
An official website of the United States government

