skip to main content

Title: Simplified Sensing and In-situ Measuring Approach for Building Window Properties
Windows and glazing systems play an important role in making an energy-efficient home. A portable easy-to-use in-situ measuring system of the window properties using low-cost Arduino platforms and compatible sensors is developed, 3D-printed, and then fabricated in this project and used to measure the parameters including U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Light Transmittance (VT). Comparing resultant output from the developed Arduino sensing and measurements to professional in-situ instruments, we demonstrate that this simple and compact Arduino-based instrument can obtain major window properties with reasonable accuracy. This simple but scalable sensing and measuring approach and Do-It-Yourself (DIY) fabrication workflow could be performed by creative people and even homeowners without needing complex training and building physics knowledge.
Authors:
;
Award ID(s):
1635089
Publication Date:
NSF-PAR ID:
10093239
Journal Name:
PLEA 2018
Sponsoring Org:
National Science Foundation
More Like this
  1. Rats rely heavily on tactile information from their whiskers to acquire information about their surroundings. A whisker has no sensors along its length. Instead, mechanical deformation of the whisker is sensed via receptors at its base. The present study introduces a micro-sensor developed specifically to imitate the sensing of biological rat whiskers. The sensor responds to bending moments resulting from touch and/or airflow in two axes. The sensor was designed based on analytical models from cantilever beam theory, and the models were validated with finite-element analysis. Sensors were then fabricated using micro-milled molds and integrated into an Arduino-based circuit formore »simple signal acquisition. The present work begins to develop the technology to allow investigation of important engineering aspects of the rat vibrissal system at 1x scale. In addition to its potential use in novel engineering applications, the sensor could aid neuroscientists in their understanding of the rat vibrissal-trigeminal pathway.« less
  2. Chinese Dynamic penetration test (DPT) is an in-situ testing with the advantages of simple apparatus, economical test, and continuous data acquisition, especially for measuring bearing capacity, relative density and classification of gravelly soils. The typical gravelly soils sites are selected from the Chengdu Plain in China and the river bed of Echo dam downstream in the U.S., and China-US dynamic penetration testing and hammer energy measurements are conducted. The results show that: (1) The average of energy transfer ratios is 90% and the standard deviation is 7.7%, derived from 1321 energy time-history records, tested at 3 gravelly soils sites inmore »the Chengdu Plain. The deviation is greatly affected by operation procedure. (2) The DPT test depth, using US drill rig assembling with Chinese DPT cone, can reach as much as 20 meters for assessing soil properties. (3) The average of energy transfer ratios is around 74% and the standard deviation is 8.7%, derived from 1438 energy time-history records, tested at 2 gravelly soils sites on the river bed of Echo dam downstream. The deviation is greatly affected by friction of drill rod and rope. (4) The DPT blows should be corrected according to different hammer energies. The proposed evaluation method for gravelly soils liquefaction, developed from the DPT database of gravelly soils liquefied during 2008 Wenchuan Earthquake, can be applicable for worldwide use.« less
  3. Abstract. A tethered-balloon system (TBS) has been developed and is beingoperated by Sandia National Laboratories (SNL) on behalf of the U.S.Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) UserFacility in order to collect in situ atmospheric measurements withinmixed-phase Arctic clouds. Periodic tethered-balloon flights have beenconducted since 2015 within restricted airspace at ARM's Advanced MobileFacility 3 (AMF3) in Oliktok Point, Alaska, as part of the AALCO (AerialAssessment of Liquid in Clouds at Oliktok), ERASMUS (Evaluation of RoutineAtmospheric Sounding Measurements using Unmanned Systems), and POPEYE(Profiling at Oliktok Point to Enhance YOPP Experiments) field campaigns. Thetethered-balloon system uses helium-filled 34 m3 helikites and 79 and104 m3more »aerostats to suspend instrumentation that is used to measureaerosol particle size distributions, temperature, horizontal wind, pressure,relative humidity, turbulence, and cloud particle properties and tocalibrate ground-based remote sensing instruments. Supercooled liquid water content (SLWC) sondes using the vibrating-wireprinciple, developed by Anasphere Inc., were operated at Oliktok Point atmultiple altitudes on the TBS within mixed-phase clouds for over 200 h.Sonde-collected SLWC data were compared with liquid water content derivedfrom a microwave radiometer, Ka-band ARM zenith radar, and ceilometer at the AMF3, as well as liquid water content derived from AMF3 radiosonde flights. The in situ data collected by the Anasphere sensors were also compared with data collected simultaneously by an alternative SLWC sensor developed at the University of Reading, UK; both vibrating-wire instruments were typically observed to shed their ice quickly upon exiting the cloud or reaching maximum ice loading. Temperature sensing measurements distributed with fiber optic tethered balloons were also compared with AMF3 radiosonde temperature measurements. Combined, the results indicate that TBS-distributedtemperature sensing and supercooled liquid water measurements are inreasonably good agreement with remote sensing and radiosonde-basedmeasurements of both properties. From these measurements and sensorevaluations, tethered-balloon flights are shown to offer an effective methodof collecting data to inform and constrain numerical models, calibrate andvalidate remote sensing instruments, and characterize the flight environmentof unmanned aircraft, circumventing the difficulties of in-cloud unmanned aircraft flights such as limited flight time and in-flight icing.« less
  4. Measuring the organization of the cellular cytoskeleton and the surrounding extracellular matrix (ECM) is currently of wide interest as changes in both local and global alignment can highlight alterations in cellular functions and material properties of the extracellular environment. Different approaches have been developed to quantify these structures, typically based on fiber segmentation or on matrix representation and transformation of the image, each with its own advantages and disadvantages. Here we present AFT − Alignment by Fourier Transform , a workflow to quantify the alignment of fibrillar features in microscopy images exploiting 2D Fast Fourier Transforms (FFT). Using pre-existing datasetsmore »of cell and ECM images, we demonstrate our approach and compare and contrast this workflow with two other well-known ImageJ algorithms to quantify image feature alignment. These comparisons reveal that AFT has a number of advantages due to its grid-based FFT approach. 1) Flexibility in defining the window and neighborhood sizes allows for performing a parameter search to determine an optimal length scale to carry out alignment metrics. This approach can thus easily accommodate different image resolutions and biological systems. 2) The length scale of decay in alignment can be extracted by comparing neighborhood sizes, revealing the overall distance that features remain anisotropic. 3) The approach is ambivalent to the signal source, thus making it applicable for a wide range of imaging modalities and is dependent on fewer input parameters than segmentation methods. 4) Finally, compared to segmentation methods, this algorithm is computationally inexpensive, as high-resolution images can be evaluated in less than a second on a standard desktop computer. This makes it feasible to screen numerous experimental perturbations or examine large images over long length scales. Implementation is made available in both MATLAB and Python for wider accessibility, with example datasets for single images and batch processing. Additionally, we include an approach to automatically search parameters for optimum window and neighborhood sizes, as well as to measure the decay in alignment over progressively increasing length scales.« less
  5. Structural health monitoring of fiber-reinforced composite materials is of critical importance due to their use in challenging structural applications where low density is required and the designs typically use a low factor of safety. In order to reduce the need for external sensors to monitor composite structures, recent attention has turned to multifunctional materials with integrated sensing capabilities. This work use laser induced graphene (LIG) to create multifunctional structure with embedded piezoresistivity for the simultaneous and in-situ monitoring of both strain and damage in fiberglass-reinforced composites. The LIG layers are integrated dur-ing the fabrication process through transfer printing to themore »surface of the prepreg before being laid up into the ply stack, and are thus located in the interlaminar region of the fiberglass-reinforced composite. The methods used in this work are simple and require no treatment or modification to the commercial fiberglass prepreg prior to LIG transfer printing which is promising for industrial scale use. The performance of the piezoresistive interlayer in monitoring both strain and damage in-situ are demonstrated via three-point bend and tensile testing. Addi-tionally, the interlaminar properties of the fiberglass composites were observed to be largely maintained with the LIG present in the interlaminar region of the composite, while the damping properties were found to be improved. This work therefore introduces a novel multifunctional material with high damping and fully inte-grated sensing capabilities through a cost-effective and scalable process.« less